

BRITISH INSULATED CALLENDER'S CABLES LIMITED NORFOLK HOUSE, NORFOLK STREET, LONDON W.C. 2

R workshops and laboratory technicians are familiar with the precision and dependability of "AVO" Electrical Testing Instruments. Long years of successful experience in the design and manufacture of first-grade instruments have produced a consistently high standard of accuracy which has become a tradition as well as a standard by which other instruments are frequently judged.

IMain Details of the Range of Celestion permanent maginet Loudsipeakers						
${ }_{\text {chen }}^{\text {chansls }}$	mode	SPEECH COIL IMPEDANCE		$\begin{gathered} \text { fuvicy } \\ \text { cher } \end{gathered}$	${ }_{\text {coral }}^{\text {coib }}$	
24^{4}	p2v	3.0	${ }_{180}{ }^{\text {c/ }}$	8.500	8.000	14 W
$3{ }^{\circ}$	p3C	3.0	$\stackrel{3}{1 / 2}$	7.700	24.000	iw
${ }_{5}^{5}$	${ }_{\text {Pss }}^{\text {Pso }}$	${ }_{3.0}^{3}$	${ }^{3 n}$	(8.500	${ }_{\substack{20.000}}^{20.000}$	
6_{6}^{6}	${ }_{\text {P6\% }}^{\text {P6\% }}$	${ }_{3}^{3.0}$	3^{3}	(8.5.50	$\underbrace{\text { 32, } 000}_{\substack{26.000}}$	3 $\begin{gathered}3 W \\ 3 W\end{gathered}$
8.		$\begin{gathered} 2,3 \\ 2.3 \\ \hline 2.3 \\ \hline \end{gathered}$	$1 \times$	$\begin{gathered} 6.200 \\ \hline 1.000 \\ 1.0000 \end{gathered}$	$\begin{aligned} & 24,0,0,0 \\ & 3, i, 0,0 \\ & 3,0,0 \end{aligned}$	$\begin{aligned} & 4 w \\ & \hline \end{aligned}$
lior	${ }_{\text {Plom }}^{\text {Pioc }}$	${ }_{2,3}^{2,3}$	$1 \cdot$	(10.000	退3,000	
${ }^{12}$	Pb4	15.0	${ }^{13_{3}{ }^{*}}$	12.500	140.000	12 W
${ }^{18}{ }^{\circ}$	P4	10.0	$22^{\prime \prime}$	13.500	350,00	How

FROM the range of Celestion Loudspeakers most manufacturers are able to meet their requirements. The smallest model, a midget weighing $3 \frac{1}{2}$ oz. is intended for small personal radios and the largest, capable of handling 40 watts, for public address purposes. Between these extremes, the range is balanced and well considered.

IPULIC SALES

Several Loudspeakers of this range are available to the public in chassis form or housed in attractive cabinets. All enquiries for these must be directed to our sole wholesale and retail distributors, Cyril French Ltd.

AMBASSADOR

AMBASSADOR were one of a select their Manufacturers chosen for the quality CRITAIN MAKE Radio to exhibit at it is not surprising Aus can be IT EXAIBRADIOS sell as tast made. Write for Brochure to: AMBASSADOR RADIO WORKS

POINTERS FOR DDESIGNERS

An indirectly heated 6.3 v . frequency changer of the Triode-Hexode type, the OSRAM X6IM is suitable for operation up to 60 megacycles per sec. (5 metres). Outstanding features include:-
4) High conversion conductance for comparatively low cathode current, improving signal to noise ratio.
Signal handling capacity is such that negligible distortion is apparent up to 5 volts R.M.S. on the signal grid.
Negligible "pulling" when tuned anode oscillator is used, making ganging of tuned circuits easy.
Control characteristic is designed to work in combination with KTW6I as IF amplifier, giving maximum control on both valves with negligible distortion.

A detailed technical data sheet is available on request.

Osram PHOTO CELLS

[^0]
BSH

SOUND SYSTEMS AT THE

STAND No. C. 1517 , OLYMPIA HALL, LONDON

DISC RECORDING

We shall be demonstrating our new Disc Recorder and Recording Amplifier at the BIF, and the entire range of BSR sound equipments, which will include many new features, will be available for your inspection.
Home Trade and Overseas Visitors are cordially invited to our exhibit and well-informed people will make the BSR stand their rendezvous-a wise move towards "Sound Understanding."
BIRMINGHAM SOUND REPRODUCERS LTD.
CLAREMONT WORKS, OLD HILL, STAFFS. TEL: CRADLEY HEATH 6212-3 LONDON OFFICE: 115 GOWER STREET, W.C.I. TEL: EUSTON 7515

A new transmitter of exceptional adaptability

T${ }^{1}$ HE Redifon G. 40 transmitter is a post-war design available with alternative R.F. and Modulator units, enabling the user to select exactly those services which fit each individual requirement. Maximum output power is over 800 watts on C.W., or 500 watts for Telephony or M.C.W.

In its simplest form, the Redifon G. 40 is a C.W. transmitter for medium or shortwave communication. A frequency range of $137 \mathrm{Kc} / \mathrm{s}$ to $25 \mathrm{Mc} / \mathrm{s}$ is covered by 4 alternative R.F. units, any two of which can be fitted into one set, operating simultaneously or on instantaneous switch-over.

As a telephony'station, the G. 40 can be fitted with one R.F. unit and a Modulator to give 500 watts for broadcast or communication purposes.

The G. 40 is ideal for medium-sized airports, where an M.F., C.W. beacon is required for navigation, and S.W. telephony for ground-to-plane communication. For this role a special model is available with a $500-$ watt telegraphy channel and an independent 250 -watt telephony service.

For full details of the Redifon G. 40 write to our Communications Sales Division.

Rediffusion Ltd.

Designers and Manufacturers of Radio Communication and Indusirial Electronic Equipment
BROOMHILL ROAD, LONDON, S.W. 18

©O-AX LOWIOSSABLES

SEARCHLIGT 01

frequelex
An insulating material of Low Di-electric Loss, for Coil Formers, Aerial Insulators, Vaive Holders, etc.

PERMALEX

A High Permittivity Material. For the construction of Condensers of the smallest possible dimensions.

TEMPLEX

A Condenser material oi medfum permittivity. For the construction of Condensers having a constant capacity ${ }^{\text {at }}$ all temperatures.

the most difficult problems solved by . . .

 Bullers
BULLERS LOW LOSS CERAMICS

[^1]
A FNE SEEECTION OF BARGANS

VIBRATOR PACKS, complete ($6 \mathrm{in} . \times 2$ is $\mathrm{in} \times 5$ inin.), 6 volts input, output 150 v , at $60 \mathrm{~m} / \mathrm{A}$. 25/- ea.
U.H.F. CONVERTERS, Type 27, $60-80 \mathrm{mcs}$. R.L. Series Valves. H.F., Osc., Mixer 7.5 mcs . I.F. output. Rewind coils (Osc. coil 6 turns, aerial and mixer coils 7 turns) and these Converters cover 5 metre band. Performance is remarkable, and this is one of the best Converters available to-day. Power requirements 6 v . and 200/250 volts. A few Type 26 as above, but covering $50-60$ mcs. We will supply Type 27 against orders when these are out of stock. $E 5$ ea.
Type 25 Converters using SP4I Valves. $30 / 40$ mes. Construction and circuit as above units. At present pre-set utilizing 5 position Ceramic Yaxley Switch. Removing this and substituting 3 ganging type 15 pf Tuning Condensers makes an ideal Converter for 10 metres. E4 ea.

2 VALVE AMPLIFIERS. (2 volt triode and Q.P.P. Valves.) For adding to TR9 Tx and Rx or many other useful applications. Compact (4$\}$ in. $\times \sin . \times 7 \mathrm{in}$.). $\mathrm{E} / 1 / 5 /-\mathrm{ea}$.
DIALS. Épicyclic Slow Morion Dials with 3in. ivorine scale. 40-1 reduction (by well known maker). 7/6 ea.
M.C.R.I. MINIATURE COMMUNICATIONS RX 5 VALVE SUPERHET (IR5 Mixer, IT4 Oscillator, IT4 I.F. amp., IT4 2nd Det. and IT4 L.F. amp.) Four ranges (4 Plug-in Coil Units). Range I: 100 kc 's to $1,600 \mathrm{kc}$'s. Range $2: 2.5 \mathrm{mc} / \mathrm{s}$ to $5.0 \mathrm{mc} / \mathrm{s}$. Range $3: 4.5 \mathrm{mc} / \mathrm{s}$ to $8.0 \mathrm{mc} / \mathrm{s}$. Range $4: 8.0 \mathrm{mc} / \mathrm{s}$ to $15.0 \mathrm{mc} / \mathrm{s}$.
These Rx are a beautiful job and cost many times our price to produce. As a standby Rx or portable for field days and mobile working they represent one of the finest investments you can make. These are all brand new, unused, and in maker's carton. The price? Only $10 / 10 /-$ complete.
FUIL DETAILS of above are given in our List No. 4 free on request.
Other offers include :-

BIRMINGHAM,

Choose yonr Spealien Extension

> FROM THE

Stentorian RANGE

Prices from 39/6
SENIOR MODEL
Type SC with Universal Transformer ${ }_{5} \mathbf{s}$. d.
," $S X$ minus ," $\quad 526$
JUNIOR MODEL
Type JC with Universal Transformer 500 JX minus
BABY MODEL
Type BC with Universal Transformer 2196
"BXminus " \quad " $213 \quad 6$ MINOR MODEL
Type MC with Universal Transformer $2 \quad 56$. MX minus , , 1196

Stentorian

THE PERFECT EXTRA SPEAKER FOR ANY SET

WHITELEY ELECTRICAL RADIO CO. LTD. MANSFIELD, NOTTS.

THE EDISON SWAN ELECTRIC CO. LTD. 155 CHARING CROSS RD., LONDON $\underset{(\text { (R.M. } 122)}{W . C . ~} 2$

GLEAR as THE BELL OF BIG BEN When you're USING

The perfect pair for battery Radio sets

IHE CHLORIDE ELECTRICAL STORAGE CO. LTD., CLIFTON JUNCTION, NR. MANCHESTER

Head Office \& Export Sales:
BRITISH N.S.F. CO. LTD., Keighley, Yorkshire (Sole Licensees of OAK Manufacturing Co., Chicago) London Office: 9 Stratford Place, W.I. Phone: MAYfoir 4234 (Sub-Licensees-A. B. Metal Products Ltd.)

SENSHTVEE
 VALVE IMPEDANCE

 INPUT

 INPUT
 } 2 megohms.ZERO SETTING
Stable and remains set on all ranges.

This instrument is now available from stock. Write for full particulars and specification. PRICE $£ 75$

FHD FURZEHILL LABORATORIES LTTD

METALLISED CERAMICS

Two new S.P. metallised bushes-

 one at either end of the rangeFor full information and prices please write to:

STEATITE \& PORCELAIN PRODUCTS LTD.

STOURPORT-ON-SEVERN, WORCS. Telephone: Stourport III. Telegrams: Steatain, Stourport.

Ask your local Factor to show you one of these remarkable instruments and to put your name down on his waiting list.

Transformers

 made to suit you.If your product works on a voltage that the mains does not supply, we can design and build transformers to suit your exact requirements. We manufacture transformers of all types up to 5 kVA and we specialise in "Specials" for industrial purposes.

DENCO COMPONENTS

Now available from the following approved Stockists who are qualified to give you good service

BATH

L. F. Hanney

BOSTON
Vamplew Bros
BRADFORD
J. Dobson

BRIGHTON
Goodsell, Ltd.
BRISTOL
Cranbrook Radio
BROMLEY, KENT
R. A. Minter,

BURNLEY
J. Dobson,

CAMBRIDGE
Baily, Grundy, \& B.
CHADWELL HEATH
Drury, Beardow
COLCHESTER
Joslins, Ltd.
CONWAY
J. W. B. Evans

CORNWALL
St. Columb Radio
COVENTRY
L. \& K. George

DARLINGTON
C.R.S.S.

ELGIN
Sam Murphy
FOREST HILL, S.E. 23
E. A. Porrit

GILLINGHAM
Radiovision
GLASGOW
Radiographic
Clydes dale Supply Co.

HARROW
Odeon Radio HASTINGS (Ore) Service Radio HIGH WYCOMBE Ryan Bros. KINGSTON
Kingston Radio S. \& S.
LEEDS
Vallance \& Davison LONDON

Premier Radio
Webbs Radio LOWESTOFT N. J. Brundie NEWCASTLE N. F. Whatley NORHAM-ON-TWEED O. C. Doley NOTTINGHAM University Radio ORMSKIRK
Coulphone Radio RUGBY
Benn Radio \& Elec.
SALISBURY
Southern Radio SOUTHAMPTON Worboys \& Tourtel SWINDON K. L. W. Cook TEIGNMOUTH South Devon A.S. WORTHING Bowers \& Wilkins

MIDGET Components

THE DESIGN OF

Compact APPARATUS

EDDYSTONE 595, 2in. dial (direct drive)
PRS MiDGE 597, 2in dial (precision slow motion) R.S. NIDGETRON VALVES, length 43 mm .

Type 501, L.F. Pentode, filament I. 4 volts at 50 milliamps. Type 500, H.F. Pentode, filament 0.75 voits at 50 milliamps BRIMAR .iPEANUT ${ }^{45}$, to $67 \frac{1}{2}$ volts. Price, each
 3. W, 111 s.
"WEARITE" MIDGET INDUCTORS,
shielded in round cans, I $\frac{3}{2}$ in. dia., I_{16} in in high, plus tags. Type
207 Mic. or output transformers Ratio $1 / 60.150 \mathrm{~m} / \mathrm{a}$ on Pri. 208 Output transformer $210 \quad 1 / 15,75 \mathrm{~m} / \mathrm{a}$ on Pri.
$\begin{array}{lll}\text { 2 } & 208 \text { Output transformer } & , 3 \\ 209 \text { Intervalve transformer } & 8 / \mathrm{I}, & 7 \mathrm{~m} / \mathrm{a} \text { on Pri. }\end{array}$ 209 Intervalve transformer \quad, $1 / 4.3$ I m/a on Pri. 212 Modulation transformer $\quad, \quad 1 / \mathrm{I}, \quad 15 \mathrm{~m} / \mathrm{a}$ both. 213 Choke, $40 \mathrm{H}, 4 \mathrm{~m} / \mathrm{a}, 4,700^{\circ}$ ohms. All types each, 15 s .0 d.

5s. 6d.
IIs. 6d.
"WEARITE" MIDGET I.F. TRANSFORMERS,
 T.C.C. "MICROPACK" ELECTROLYTICS.

25 mfd . 50 v. , 1 点in. by sin.
25 mfd .25 v . IR in. by hin.
50 mfd .12 v .1 fin. by in.
.01 mfd 350 v . rin. by fin.
CELESTION MIDGET LOUDSPEAKER.
Outside dimensions, $2 \frac{1}{2} \mathrm{in}$. square
EDDYSTONE FLEXIBLE COUPLER.
Type 529 for tin. spindle, diameter rlin.
Type 550 Midget, for $\frac{4}{3}$ in spindle, dia. 1 in VALVEHOLDERS.
Hivac Midget Valveholders, 4 and 5 pin, both Is. Od.
"Button" ceramic for 6AK5, 9001 , V888, etc. Is. 6 d . Diode type Valveholder
35. Od.

2s. 9 d .
2s. 9 d .
Is. Od.
El 75. Od.
2s. 6 d .
2s. 3 d .

1s. od.

WMeb/SS

We usually stock these items, but this advertisement must not be takemto guarantee immediate availability. Supply continuity still leaves a loz to be desired.

Hours of Business : 9 a m. to 5.30 p.m Sais. 9 a.m. to / p.m.

Dver prickly pear or paddy field or pasture-across all the trackless wastes of the world, you know where you are with

H1h(0)I

MARCONI'S WIRELESS TELEGRAPH CO. LTD. THE MARCONI INTERNATIONAL MARINE COMMUNICATION CO. LTD. MARCONI HOUSE, CHELMSFORD, ESSEX.

DUBILIER CONDENSER CO. (1925) LTD • DUCON WORKS • VICTORIA ROAD • N. ACTON • LONDON • W. 3 Telephones: ACOrn 2241 (5 lines) Telegrams: Hivoltcon, Phone, London. Cables: Hivoltcon, London. Marconi International Code. D. 10

PERTRIX

REDRESSED

 FOR PEACE

PERTRIX BATTERIES have emerged from the testing ground of war as more reliable, more efficient than ever before. You will soon see them in the smart new post-war pack shown above. It denotes the finest battery fer radio use yet made.

HOLSUN BATTERIES LIMITED

I37 Victoria Street, London, S.W.I.

WESTINGHOUSE BRAKE \& SIGNAL CO. LTD., 82, YORK WAY, LONDON, N.I.

15

Its eass to make Pick-ips if you know how.
 The know-how in the manufacture of exington

is the result of long experience and precision watch - making standards which give a finely constructed instrument the details of which are shown in the sectional diagram.

DE LUXE MODEL Robust design. Accidental dropping on record will not damage Pick-up Extremely low moment of inertia (80 milligrams total weight of movement) Pure sine wave with no harmonic distortion Automatic needle or sapphire changing opens new fidelity field to the amateur Can be used with normal record changer without fear of damage.
|Price (without sapphire) $\mathbf{E 5} .10 .0$, plus $24 / 6$ P.T.
Sapphire Needle with specially tapered shank, price $15 / 3$
extra (including extra (ineluding P.T.)
JUNIOR MODEL. Identical in design and workmanship to the De Luxe, the only difference being that it is not equipped with the Automatic Sapphire needle inserter and Extractor device and metal sole plate. Made to take standard steel and fibre needles this model enables every music lover to enioy the fine reproduction which only a moving coil pick-up can give.
\&3.9.3, plus $15 / 5$ P. T

See November issue fcr Curve of Pick-ups

- PLUG-IN HEADS

These are a available in both Junior and De Luxe types to De Luxe types to
fit Collaro and Garrard arms, thus providing easy
 change-over from Magnetic types. Input ronversion may be required. (See our
Technical Brochure) Technical Brochure.) Price 49/6, plus II/- P.T. Separate Ejector for De Luxe type, 30/10, p!us 6/10 P.

- PRE-AMPLIFIERS -

having an inverse of the recording characteristic incorporated are available for use with pick-ups. These are necessary with some amplifiers. 'Price complete with valve and Input Transformer, ©6.1.0.

Illustrated Technical Brochure upon request.
Export and Trade Enquiries Invited.
Obtainable through your local dealer. PLEASE NOTE NEW ADDRESS:-

[^2]-M.R. SUPPLIES Ltalcifer only brand
Ex-ARMY NO. 38 TRANSMITTER/RECEIVERS (Walkie Taikie). Rnage up to 10 miles. Wavelength 7.9 to $9 \mathrm{~m} / \mathrm{c}$. (approx. $30 / 40$ metres). Compact infantry type. Itern sold separately : Transmitter/Receiver with valven, 55/- (denpatrh) $3 / \cdot)$: bux of 3 spare valves, $17 / 6$; Throat Microphone, $10 /-$; Headphones with plug, 10/-: Teleacopic Aerial la cabe. 7/6. The complete siatlun (less 120 . ath 2/3 5 . battery). $\& 5$ (deapatch 5/6).
"FUZIT "WIRE JUINTEES. A large purchase enables us to present this oppor. tunity. This very uneful 太. T.C. product electrically welds all gauges of wire from $\delta 0$ to 30 o.s. 8 . (copper and resistance) jastantly. No solder or thax. no dry jointa Operation $200 / 260$ v. A.C. Viquipment comprisen well-housed portable tranafortaer, hand-tool with carbon electroden and trigger, leadn, ready for ube. Further details If required. but supply limited $78 / 6$ complete (dea, 2/6).
MINIATURE CजMMUNICATILN RECEIVERS (M.C.B.1). An unbeatable M.R If ir. The 5-valve superhet in metal came approx. Gin. by 3in. liy 2in., A.C.jD.C. Puwer Pack in asane aize cane, two H.T./L.T. Batteries (one spare), four coil units. headphones, aerlal and earth, cominlete, univermal anil mobile, brand new lit bernitically sealed coutaluer, E10 (carr, $4 / 6$). TThe thiniug rauken are; 188/s000 etres, $60 / 120$ metrea, 3)
MINIATURE PIEZO-CRYSTAL MICROPGONES (Rothermel-Brush). Only 1 in diameter, with 5 megohm loading lacorporatod, nade for deal-aids but euitable for dic. purposes, 28/6.
DIMMERS for Stage Lightiag. Fully enclosed, with slow motion drive and handWheel, carbon break flicker-switch, rated to control atated load from full-bright o blackoutat 220240%. 500 watt, $78 / 6$ (den. 8/6); 1000 watte, 27/2/6 (des, 4/6) : PRECISION YOLTM (rles. $8 /$-): 2500 watte, $£ 8 / 15 / 0$ (dea. $6 / \mathrm{c}$).
PLECLS demand prenent for cherking maing voltage), 76/6.
mpliders uaranteed. $200 / 240$ v, D.O to 200 anton, fully amnothed ontput, trouble-free athd 100 watta, $£ \theta$ (der. $2 /$). NOTE 240 v. A.C. 50 crclew : 200 -watt, $£ 12$ (den. $3 /-$); with, If for televinion we recommend the 35 cycie Thodel, 200 Whts bathe price.
S.T.C, TOGGLE PRESSES, Geaior and Minor modela again in stoch. Double-acting, space-saving, precise tool anithlale for all presaing operations in many tradea. Senior, wt. 130 lbs., pressure $1 \frac{1}{2}$ tıns, $£ 30$: Minor, wt. 80 lbe., presaro 0.75 ton, $£ 24 / 15 / 0$ (prices ex this address).
1,T. RECTIFIERS (B.T.C.) for elurgiug up to $12 \mathrm{v}_{\mathrm{n}}$, all full-uspe: $1.5 \mathrm{amp}, 12 / 6$; 4 smp, 22/6; 6 to 8 amp, $38 / 6$. Suitable tapped sec. Mains Transformers to suit the l. 5 a. rect. $22 /$ in 4 n., $32 / 6$; 8 a.. $51 / 6$,
R TABY REEOSTATS, with 21 in . control knob, 3-hole mitg. 4 obm: 4.5 awp, $23 / 8$: 115 ohms 1 amp, $25 / 6 ; 10$ ohma 3 amps, 28/6, and othera.
ROTHERMEL PIEZO-CRYSTAL PICE-UPS. Replacemeat heade for Garrard or Collaro arme. Mueh Iniproved performance, minimum record wear. 46111. ROTHERMEL SAPPHIRE GRAMO NEEDLES, the trent permanent needle for any Hek-up, $12 / 6$ each. Power Ampliflera. Thia compact, uneful model has inputid for m/e mike, any ty ${ }^{\text {de }}$ piek-up and output matching for 7.5 and 15 ohme, fitted vol, and tone controle, steel housed 18 in . By tin. by in. £ 28 (dea. $5 /$) .

Pleare include aumelent for packing and despatch.
M.R. SUPPLIEs Lid., 68, New Oxford Street, London, W.C.1.

Greenhill Crescent. Phome HARROW Harrow on the Hill.Middx.

0895

The Goodmans Loudspeaser of to-day is the latest of a long line of instruments, each the product of the same policy of forward-looking research and development adopted by the company at its inception nearly a quarter of a century ago. The r8-inch model illustrated is a thoroughbred that carries on the established Goodmans "tradition of excellence."

Coodmans

GOODMANS INDUSTRIES LTD
 MIDDX.

Study television at its source: *

read about this new opportunity

Spectal three-week practical Laboratory/Workshop Courses in Radio and Tele:vision Servicing are commencing in April. Send for details.
E.M.I. Research and Development Loborotories were largely responsible for the Marconi-E.M.I. system of television transmission used by the B.B.C. Service - the first in the world.
E.M.I. Factories produce the finest television receivers in the world.
E.M.I. Service department is the largest and most expertly equipped in the country.

NOW-E.M.I. have set up a training organisation to provide immediate courses on practical TELEVIIION (Postal and College Courses.)
SOON this new Training College will extend its syllabus to cover all branches of Electronic Science.

This is your opportunity to secure a thorough training in Television from the very pioneers of the Science.

Ask your local H.M.V. dealer for further details or send for our free pamphlet which gives full details of this and other courses.
E.M.I. INSTITUTES, LTD.

Dept. 16 - 43 GROVE PARK ROAD : CHIBWICK - LONDON • W. 4

Associated Company of:

THE GRAMOPHONE CO. LTD.
("HIS MASTER's VOICE")
THE MARCONIPHONE CO. LTD. MARCONI-E.M.I. TELEVISION CO. LTD. RADIOMOBILE LTD., ETC. ETC.

U.I. METALLISED CERAMICS

We specialise in the production of all types of Metallised Ceramic components-Hermetic Seals, Sealed Lids, Tag Boards, Bushes, Formers, etc. These are available in soldered, coppered or silvered finish, according to requirements. The suitability of any finish is a matter which we shall be pleased to discuss.

HERMETK SEAL TYPE HS 421

Fiashover Yoltage over outside path 4.5 KVDC at $20^{\circ} \mathrm{C}$. Flashover Yoltage over inside path 3.5 KVDC at $20^{\circ} \mathrm{C}$. Small size. Close assembly. Physcally robust.

Components made to stondard design or to customers' specific requirements. Write for details.

UNITED INSULATOR CO. LTD., OAKCROFT RD., TOLWORTH, SURBITON, SURREY
Telephone : Elmbridge 5241 (6 lines)
Telegrams: Calanel, Surbiton

Unsurpassed In
 Ceramics

Wireless World

Proprietors: ILIFFE \& SONS LTD.

> Managing Editor: HUGH S. POCOCK, M.I.E.E.
> Editor:
H. F. SMITH

Editorial, Advertising and Publishing Offices: DORSET HOUSE,
STAMFORD STREET, LONDON, S.E.I.

Telephone
Waterloo 3333 (50 lines).
Telegrams "Ethaworld, Sedist, London."
Δ
PUBLISHED MONTHLY

Price: 1/6
(Publication date 26th of preceding month)

Subscription Rate: Hone and Abroad 20/- per annum.

Radio and Electronics

37th YEAR OF PUBLICATION MAY 1947

MONTHLY COMMENTARY 157
RADIO COMMUNICATION DEVELOPMENTS 158
DESIGN FOR A HIGH-QUALITY AMPLIFIER—2 By D. T. N. Williamson I6I
TELEVISION RECEIVER CONSTRUCTION-4 164
DESIGN DATA (13) Corrected R. C. Coupling 170
NOISE FACTOR-3 By L. A. Moxon I7
SHORT-WAVE CONDITIONS By T. W. Bennington 176
COMPONENT DESIGN TRENDS 177
FANDOM RADIATIONS By "Diallist".. 182
PRE-EMPHASIS AND DE-EMPHASIS By 'Cathode Ray " 183
SIX-METRE TRANSATLANTIC SIGNALS By R. Naismith 186
WORLD OF WIRELESS 187
LETTERS TO THE EDITOR 19I
FECENT INVENTIONS 194

Branch Offices:
Coventry :
8-10, Corporation Street.
Telephone: Coventry 5210 . Telegrams:
" Autocar, Coventry."
Birmingham :
King Edward House, New Street, 2. Telephone:
Midland 7191 (7 lines). Telegrams:
"Autopress, Birmingham."
Manchester :
260, Deansgate, 3. Telephone
Blackfriars 4412 (4. lines). Telegrams
" Iliffe, Manchester." Glascow :
26b, Renfield Street, C. 2 .
Telephone: Central 4857.
Telegrams: "Iliffe, Glasgow."

Δ

As many of the circuits and apparatus described in these pages are covered by patents, readers are advised, before making use of them, to salisfy theenselves that they roothd not be infringing patents.

Valves and their applications

By M. G. SCROGGIE, B.Sc., M.I.E.E. No. 5: Mullard LOW MICROPHONY PENTODE EF37

THE main difficulties with high-gain audio amplifiers are fluctuation noise, hum, and microphony. Noise has been much discussed during the last few years, and precautions against hum have recently been explained in detail.* Less has been said about microphony, but it can be very annoying. To minimize noise and hum it is generally necessary to place the first stage of amplification as close as practicable to the microphone or other sound pick-up. The first valve may thus be more or less exposed to the sound and will make an unauthorized contribution as a microphone - but not a high-fidelity one! In addition, wherever it is installed it may pick up vibrations and inject them into the programme. And if it is within sound of the loudspeaker there is the further risk of acoustic feedback, causing peaks in the response, or even sustained howls.

The obvious solution is to protect the valve from any sound or vibration, by mounting it on rubber and wrapping it around with perhaps several lots of sound-absorbing material. If the valve is badly microphonic, it is surprising how much of this sort of thing may be needed. Such trouble can be avoided by using an anti-microphonic type of valve.

The EF37 has been designed with this particularly in view. The X-ray photograph shows the double mica supports at top and bottom of the electrode assembly, which make the structure much more rigid.

In other respects, also, it is suitable in the first stage of a high-gain amplifier. Being a pentode, it can yield a gain over the a.f. band of 150-200 times, which is sufficient for the noise and hum contributions of reasonably-designed subsequent stages (and its own anode resistor) to be neglected. And difficulties due to Miller effect are avoided. However, the valve can be used as a triode if preferred.

[^3]The top-cap control-grid connection helps to make a low hum level possible. Another help is to connect the usual "hum-dinger" heater tapping to a point 5 or 6 volts more positive than the cathode.

To test microphony I made up a special high-gain amplifier. With the first valve on a rigid holder and completely unshielded from the loudspeaker, it was possible to provoke a howl with an EF37 first stage, but only when the gain was turned up to a point at which thermal-agitation noise was excessive. Under practical conditions with a modicum of acoustic protection, and usable gain not greatly exceeded, the likelihood of microphonic trouble would be remote.

This is the fifth of a series written by M. G. Scroggie, B.Sc., M.I.E.E., the well-known Consulting Radio Engineer. Reprints for schools and techmical colleges may be obtained free of charge from:

THE MULLARD WIRELESS SERVICE CO. LTD., TECHNICAL PUBLICATIONS DEPARTMENT, CENTURY HOUSE, SHAFTESBURY AVE., W.C. 2

Wireless World

Radio and Electronics

Vol. LIII. No. 5
MAY, 1947
Price 1s. 6d.

Monthly Commentary

Live or Recorded?

IN our last issue a correspondent, referring to the discussion in our pages on the quality of B.B.C. transmissions, expressed himself as strongly in favour of recordings as opposed to "live" broadcasts. The argument in support was mainly that recordings can be made at leisure and so the programme can be polished to a high state of artistic perfection before transmission. Another strong argument is that recordings of the best programmes can be transmitted at peak listening hours, without regard to the availability of performers or to the timing of events forming the subject of the broadcasts.

Considered in the light of pure reason, it is indeed difficult to controvert these arguments, always assuming that the quality of recordings can be made good enough to do justice to the great majority of the receivers in use or to the natural limitations at present imposed on transmission quality. But this is a matter that cannot be considered on a severely technical and reasonable basis; many other factors -psychological, artistic ard of expediency-must be taken into account. The whole question is thus rather beyond the scope of a journal like Wireless World, but the correct use of the medium of broadcasting is of such high importance to all of us that the issue cannot be shirked.

A surprisingly large number of readers has written to express strong disagreement with our original correspondent's support of recordings. Although we cannot agree with the reasons put forward by the majority of the writers of these letters, we do agree most heartily with them that record-
convey to the listener the illusion that he is actually participating in the event. American broadcasters exploit the advantages of the "live" programme to the full, but the B.B.C. makes no secret of its liking for recordings. There is also the question of incentive or stimulus to the broadcasters, which seems to be so sadly lacking when they are constantly working on recordings. One is forced to the natural but rather trite conclusion that unless programmes are "live" they run a grave risk of becoming "dead."

Meaningless Superlatives

IN last month's issue we expressed our growing dissatisfaction with existing methods of classifying the frequency and wavelength bands used in radio communication. In particular, we protested against the arbitrary assignment of precise significance to such vague comparatives and superlatives as " very," "ultra" and "super." One never knows when a writer or speaker is using these terms in the officially accepted sense, as his fancy dictates, or is being deliberately vague.
Since expressing these views, we are confirmed in our opinion that such terms are quite intolerable: nothing like them is to be found in any other branch of science or technology. But it has been pointed out that our suggestion for using the term "very high" to describe all frequencies above $30 \mathrm{Mc} / \mathrm{s}$ is open to the objection that " very"' has already been given a precise meaning in the British Standards Glossary. We agree, and substitute the word "extra" in the amended table of proposed classifications printed below.

RADIO-COMMUNICATION
 Post Office S-W transmitter station building at Criggion near Shrewsbury. DEVELOPMENTS

Survey of Advances Since 1939

FROM the 25 th to the 28 th March and on the 2nd April the Institution of Electrical Engineers held a Convention at which papers were read to describe the wartime uses of radio in communications. Although similar in its plan to the Radiolocation Convention of a year earlier, the papers were in most cases of a very different nature for there was a distinct tendency to stress operational aspects rather than technical.

This is very largely due to the very different character of communications development. Prior to the war, it was on a wellestablished basis and wartime development has been chiefly to meet specific war requirements, among which reliability, light weight, robustness and the ability to withstand extremes of temperature and humidity were of the greatest importance. While these were also requisites of radar equipment, the purely technical problems of circuit technique problems often of an entirely new kind formed the major interest.

Nothing analogous to this occurred in the field of communications for although the pulse communication systems certainly opened a new branch with a new circuit technique they owe much to radar practice.

New and unfamiliar circuit practices in communication sets are dictated largely by military needs and are, therefore, often ones which have little or no civil application. For the infantry patrol set, for instance, a number of ingenious "netting" devices were developed. At a time when

A modern "pre-fabricated" naval receiving bay, with typewriter cabinet (typewriter housed under desk). The two Murphy receivers shown were described in Wireless World for December, 1946.
the supply position made the use of quartz crystals impracticable, it was required that any one of a group of man-pack sets should be able to transmit and be received at once by all others in the group.

Various methods were developed to enable the operator not only to keep his transmitter and receiver tuned to the same frequency but to the scheduled net frequency for the operation in hand. The methods evolved gradually transferred the difficulties from the operator to the factory.

This is but one example of a general tendency, and one which will unquestionably persist in peacetime, to simplify the operation of equipment even if it involves complication in design and maintenance, to say nothing of manufacture.

Apart from this the new things in communications were often the development of existing methods for some new purpose. A case in point is the use of really high frequencies for communication purposes. Frequencies of $30-$ $150 \mathrm{Mc} / \mathrm{s}$ were well known before the war and had been used for experimental communication links as well as for television. There was, however, no deep knowledge about their propagation characteristics particularly in heavily wooded country and the jungle.

It was realized that under such conditions the attenuation would be severe and this unquestionably retarded their adoption for infantry patrol and tank sets, most of which continued to operate

Radio-Communication

Developments-

in the H.F. band below $9 \mathrm{Mc} / \mathrm{s}$ throughout the war, in spite of its congestion. However, extensive trials proved that the heavy attenuation of metre waves in the jungle was more than offset by the lower noise level, particularly at night, and the greater efficiency of the aerial. Towards the end of the war, therefore, such sets were looked upon with marked favour.

At such short wavelengths the use of frequency modulation has special advantages for military purposes, largely because of the increased efficiency of the transmitter. Although large deviations are needed for the highest signalnoise ratio, it has been found that with deviations above 1.5:1, over 8 o per cent of the power is in the sidebands and for the particular requirements of the Services a ratio of around $2: 1$ appears adequate. This leads to quite narrow - band frequency-modu lation systems.

For aircraft purposes, of course, these wavelengths were widely used, for the same attenuation problems did not arise and there was considerable ingenuity in the development of stable systems giving easy channel selection.

A tremendous amount of work was done on pulse modulation in order to obtain a multi-channel equipment radiating only a very narrow beam in the interests of secrecy. Such a beam could only be obtained with an aerial system of reasonable dimensions by adopting centimetre waves, and at the time when the schence was first mooted this in turn virtually involved the use of the magnetton. This is a valve which is quife difficult to modulate by ordinaty methods, but which lends itself well to pulse modulation.

Thus the desire for a narrow beam of radiation ended by requiring the use of pulse modulation, and the simplest way of obtaining multi-channel operation proved to lie in the use of interlaced pulses on a so-called timedivision basis, as distinct from the usual frequency-division adopted in ordinary carrier equipment. It is not necessary to go into this in detail for it resulted in the No.

Io set, which has been previously dealt with ${ }^{1}$.

In spite of its success the equipment had one drawback. It required inputs at audio-frequency for each of its eight channels and so when inserted in a cable route, for which a carrier system on a frequency-division basis is used, carrier - terminating equipment was needed to interconnect the cable and the No. Io-set radio links. With a conventional radio link capable of handling channels on the frequency-division system this is not necessary. Future development of the pulse modulation system would seem to lie in methods which enable it to be

Frequency - division multi channel equipment was adopted in the No. 26 set on frequencies around $100 \mathrm{Mc} / \mathrm{s}$. Although of higher power, the lower aerial gain and the semi-optical properties of even $100 \mathrm{Mc} / \mathrm{s}$ result in little more range than with the $6-\mathrm{cm}$ No. Io set.

On long-distance circuits, such as those used for transatlantic telephony by the G.P.O., singlesideband operation with reduced carrier has marked advantages over double-sideband. There is but little power radiated in the absence of modulation, which is economical, and the power-handling capacity of the final R.F.

Inductance room for the long-wave transmitter at the Post Office Criggion station, showing the aerial lead-in.
used on a frequency-division system and the time-division system would seem more suited to circuits in which cables are not involved.

[^4]amplifier is available for dealing only with the one sideband instead of the two sidebands and carrier of a double-sideband system. Substantially more power can thus be radiated and a nar-rower-band receiver can be used, resulting in an improvement of some 9 db in the signal-noise ratio.

The carrier is not entirely suppressed but is transmitted at 26 db below the peak power of the transmitter so that it serves as a pilot to control the insertion of a local carrier at the receiver.

One of the greatest advantages of single-sideband operation lies in the reduced distortion under fading conditions, and this applies also to the single-sideband reception of a double-sideband transmission. Indeed, in this case one can go further and use two receivers to receive the two side-
in the power-handling capacity of the sender.

At the "Propagation" session of the Convention two very interesting papers were read-one by Sir Edward Appleton and another by K. W. Tremellen and J. W. Cox. These papers are of particular value because within them are

Zenithal azimuthal projection map showing Post Office radio-telephone circuits with their true bearing and distance from London.
bands independently and then combine the A.F. signals to give a form of diversity reception.

An ingenious M.C.W. multichannel telegraph system was devised. It is of the sub-carrier type in which each sub-carrier is modulated by a keyed audio tone $(900 \mathrm{c} / \mathrm{s})$. The phases of the tones used for the channels are arranged to be displaced by $360 / n$ degrees where n is the number of channels.
For a two-channel system the audio tones are 180° out of phase, and because of this the peak voltage for equal modulation depths on both channels is no more than for single channel operation. With three channels at 120° phase angles the peak voltage is greater and the amplitude of each subcarrier must be reduced to twothirds of that with one or two channels. The system obviously results in a considerable increase
contained, in condensed and easily usable form, a comprehensive survey of ionospheric knowledge as it stands to-day, including historical data regarding the accumulation of the knowledge, scientific details of the world-wide ionospheric structure and of its continual variations, and explanations of the engineering techniques for the application of the ionospheric data to radio communication. The two papers cannot fail to become the main source of reference for those engaged in short-wave communication for some time to come.
In presenting his paper Sir Edward Appleton pointed out that the two basic relations in ionospheric work are the (h^{1}, f), which determines the highest frequency on which it is possible to communicate, and the $(-\log p, f)$, which determines the lowest. Between these two is the usable
band of frequencies, varying constantly with distance, time of day, season, epoch of the sunspot cycle and with geographic and geomagnetic latitude and longitude, and the ultimate aim is to predict all the variables, and to chart the future ionosphere conditions on a world-wide basis, so that the usable frequency band will be clearly indicated at any time and place. This object is now achievable, and the Appleton Paper described in detail the nature of some of the difficulties encountered and the measures taken to bring the theoretical and scientific data into a form applicable to engineering needs.

The Tremellen and Cox paper concentrated rather more fully on the engineering problems. From a communication point of view, a transmission path via the ionosphere was considered as behaving like a band-pass filter, introducing noise and distortion as well as attenuation, and, since the characteristics of the filter are not under human control, the problem consists of being able to calculate or predict the properties in the passband for any time or place. A comprehensive survey of the principles behind the production of ionospheric contour charts was given, as well as details of the way in which they should be used. It was pointed out that perfection in these methods is still a long way ahead, particularly as regards the calculation of the low-frequency limit of the pass-band, which is a complex operation depending upon many factors, such as ionospheric absorption, atmospheric noise, power radiated, etc. Nevertheless, " at present we do the best we can," and continually improve the methods as more data is acquired. The prediction of ionospheric storms was another matter upon which more knowledge was required before anything like success could be expected.
(A list of papers read at the Convention appears on p. 181:)

OUR COVER

The Criggion long-wave station was built as a war-time stand-by for Rugby. Materials for masts were scarce and the illustration shows how the aerial system is partly supported by a high eliff or bluff rising above the banks of ele River Severn. The transmitter operates on the Rugby frequency of $16 \mathrm{kc} / \mathrm{s}$.

DESIGN FOR A
 HIGH-QUALITY AMPLIFIER

2.-Details of Final Circuit and Its Performance

By D. T. N. WILLIAMSON (Formerly of the M.O. Valve Co.)

THE considerations underlying the design of a kighquality amplifier were discussed in the first part of this article. A circuit of the complete amplifier is shown in Fig. 5. This follows the basic arrangement of Fig. 3(b). The design of the individual stages will not be treated in detail, but a review of the salient features may be of value. As a measure of standardization
possible the first stage has been directly coupled to the phase splitter, eliminating one R.C. coupling. The first two stages are thus designed as a single entity. The phase-splitter section, which consists of a triode with equal loads in anode and cathode circuits, operates partly as a cathode follower, its grid being some 100 V positive with respect to chassis. The anode of the first triode is also
from normal changes in valve parameters. The cathode bias resistor of V_{1}, to which feedback is applied from the output transformer secondary, is kept as small as practicable to avoid gain reduction in the first stage, due to series feedback.

Driver Stage.-The output from the phase-splitter is taken to the push-pull driver stage. Provision is made for varying the load re-

Fig. 5. Circuit diagram of complete amplifier. Voltages underlined are peak signal voltages at 15 watts output.

R_{1}	$1 \mathrm{M} \AA \ddagger \mathrm{watt} \pm 20$ per cent
R_{2}	$33,000 \Omega \mathrm{Fwatt} \pm 20$
RL_{3}	$47,000 \Omega 1$ watt ± 20
R_{4}	$470 \Omega \frac{1}{4}$ watt ± 10
$\mathrm{R}_{5}, \mathrm{R}_{6}, \mathrm{R}_{7}$	22,000 $\Omega 1$ watt ± 10
, R_{9}	$0.47 \mathrm{M} \Omega \frac{1}{4}$ watt ± 20
	390Ω 里 watt ± 10
$\mathrm{R}_{11}, \mathrm{l}_{1 \mathrm{R}_{13}}$	$39,000 \Omega 2$ watt ± 10
R_{12}	$25,000 \Omega 1$ watt wire wound variable.
$\mathrm{R}_{14}, \mathrm{R}_{19}$	$0.1 \mathrm{M} \Omega \frac{1}{\text { ¢ }}$ watt ± 20

all valves except those of the output stage are type L63, triodes of about 8,000 ohms A.C. resistance.

Initial Stages.-In order to keep the phase shift in the amplifier at low frequencies as small as

CIRCUIT VAlUES.

$\mathrm{R}_{15}, \mathrm{R}_{20}$	1,000 2 + watt ± 20 percent
$\mathrm{R}_{16}, \mathrm{R}_{18}$	$100 \Omega 1 \mathrm{watt} \pm 20$
$\mathrm{K}_{17}, \mathrm{R}_{21}$	$100 \Omega 2$ watt wire wound variable.
R_{2}	$150 \Omega 3$ watt ± 20
$\mathrm{R}_{23}, \mathrm{R}_{24}$	100 \& watt ± 20,
R_{25}	1,200 $\sqrt{ }$ speech coil impedance, 1 watt.
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{5}$	$8 \mu \mathrm{~F} 450 \mathrm{~V}$, Wkg.
	$0.05 \mu \mathrm{~F} 350 \mathrm{~V}, \mathrm{Wkg}$.
$\mathrm{C}_{6}, \mathrm{C}_{7}$	$0.25 \mu \mathrm{~F} 350 \mathrm{~V}$, Wh.g.

arranged to be about 100 V positive and is coupled to the phasesplitter grid. Due to the cathodefollower action of V_{2} the operating conditions are not critical and no trouble is likely to be encountered

sistors of this stage which, in conjunction with a common unbypassed cathode bias resistor, allows a considerable range of adjustment to be made in the drive voltages to the output valves

Designfior a High-Quality Amplifierto compensate for any inequality in gain.

Output Stage.-The balance of quiescent anode current in the output stage is a matter of some importance, as it affects the performance of the output transformer to a marked degree. In this amplifier, provision is made, by means of a network in the cathode circuits of the KT66 valves, for altering the grid bias of each valve, giving complete control of the static conditions of the stage. A feature of this arrangement is that the valves operate with a common unbypassed cathode bias resistor, which assists in preserving the balance of the stage under dynamic conditions.

Output Transformer. - The turns ratio of the output transformer will be determined by the impedance of the loudspeaker load. It is convenient to make each secondary section of such an impedance that by series-parallel arrangement a number of suitable load impedances may be provided utilizing all the sections of the transformer. A suitable value of impedance is 1.7 ohms per section, giving alternatives of 1.7 , $6.8,15.3,27$ ohms, etc.

Winding data for a suitable transformer are given in the appendix.

Negative Feedback Network. The design of this amplifier is such that no difficulty should be experienced in the application of negative feedback up to a maximum of some 30 db . Pro-
Oscillograms of in-put-output characteristic; left hand column, without feedback ; right hand column, with feedback. (I) At $300 \mathrm{c} / \mathrm{s}$ with slight overload (2) At 300 c/s; output voltage 15% below maximum. (3) and (4) Conditions as in (I) and (2) respectively, but at $30 \mathrm{c} / \mathrm{s}$.

vided that the threshold of instability is not reached, the benefits of negative feedback increase as the amount of feedback

Fig. 6. Input-output characteristic and harmonic distortion curves, with and without feedback.
is increased, at the sole expense of loss of gain, but there will be little if any audible improvement to be gained with this amplifier by increasing the amount of feedback beyond 20 db .

The feedback network is a purely resistive potential divider, the bottom limb of which is the cathode bias resistor of the first stage.

With component values as specified no trouble should be experienced from instability due to the effects of unintentional positive feedback. Should instability arise it will probably appear as oscillation at a supersonic frequency. This may be transient, occurring only at some part of the cycle when the amplifier is operated near maximum output. Its cause may be bad layout or an output transformer with a higher leakage reactance than specified, or it may be due to resonance in the output transformer.

A remedy, which should only be used as a temporary measure, is to reduce the high-frequency response of one of the amplifier stages, so reducing the loop gain at the frequency of oscillation to a value below unity. This may
conveniently be done by connecting a small capacitor (say 200 pF) in series with a $5,000 \Omega$ resistor from the anode of V_{1} to chassis.

Performance

Linearity.-The linearity of the amplifier is well illustrated by the series of oscillograms. These show that, up to maximum output, the linearity is of a high order, and that the overload characteristic is of the desirable type shown in Fig. I(b) in the previous issue. The improvement due to the application of negative feedback, especially at low frequencies, is clearly demonstrated by the oscillograms.
Equipment for measuring intermodulation products was not available, but measurement of the total harmonic distortion was made with an input frequency of $400 \mathrm{c} / \mathrm{s}$. The result is shown in Fig. 6, from which it will be seen that the harmonic distortion at maximum rated output (15 watts) is less than o.r per cent. Intermodulation, with this degree of linearity, is not present to an audible degree.
Frequency Response.-The frequency response of the amplifier is greatly dependent upon the characteristics of the output transformer. In the amplifier tested, the output transformer had a resonance at about $60 \mathrm{kc} / \mathrm{s}$ which
put resistance of the amplifier is 0.5 ohms measured at the 15 -ohm output terminals.

Noise Level.-In the amplifier tested, the measured noise level was 85 db below maximum output. The noise in this amplifier was, however, almost entirely $50 \mathrm{c} / \mathrm{s}$
tests using a direct microphone circuit with noises such as jingling keys reveal extraordinary realism.

The amplifier can be described as virtually perfect for soundreproducing channels of the highest fidelity. It provides an ideal amplifier for sound-recording pur-

FREQUENCY IN CYELES PER SECOND
Fig. 7. Frequency response (without feedback) of 20 watt output transformer described in appendix. Generator resistance $2,500 \Omega$ load resistance I. 7Ω. Measured with 5 V R.M.S. on primary. At higher excitations the bass response improves progressively up to saturation.
hum, caused by coupling between the mains and output transformers. By more careful arrangement of these components it appeared that the noise level could be reduced to better than roo db below maximum output.
If desired, the power output of the amplifier may be increased beyond 15 watts by the use of several pairs of output valves in parallel push-pull. The output transformer, power supply and bias arrangements, and the feedback resistor R25 will require to be modified. Amplifiers of this

(a) Input waveform, $300 \mathrm{c} / \mathrm{s}$. (b) Output waveform with feedback and slight overload. (c) Output waveform with feedback but output voltage 15% below maximum.
caused a sharp dip of 2.6 db around this frequency. The characteristic within the audible range from $10-20,000 \mathrm{c} / \mathrm{s}$ is linear within 0.2 db .

Phase Shift.-The excellence of the frequency response characteristic indicates that little phase shift is present. Phase shift is only apparent at the extremes of the AF spectrum and never exceeds a few degrees.

Output Resistance.-The out-
design with power outputs up to 70 watts have been produced.

Listening tests carried out in conjunction with a wide-range loudspeaker system have fully supported the measured performance. No distortion can be detected, even when the amplifier is reproducing organ music including pedal notes of the $20 \mathrm{c} / \mathrm{s}$ order, which reach the threshold of maximum output. Transients are reproduced with extreme fidelity;
poses, where "distortionless" amplification and low noise level are of prime importance.

APPENDIX. Output Transformer.
 Specification.
 Primary load impedance

$=10,000$ ohms C.T. Secondary load impedance
$=1.7$ ohms per sec-
tion.

Turns ratio $=76: \mathrm{I}$.
Primary inductance $=100 \mathrm{H}$ (min.) Leakage inductance $=30 \mathrm{mH}$ (max.) Winding Data.

Core: r 兑in stack of Pattern No. 28A " Super Silcor" laminations. (Magnetic and Electrical Alloys.)

The winding consists of two identical interleaved coils, each $\frac{1}{2}$ in wide, wound on 1 in $\times 1 \frac{3}{4}$ in paxolin formers. On each former is wound : 5 primary sections each consisting of 5 layers (88 turns per layer) of $30 \mathrm{~S} . \mathrm{W} . \mathrm{G}$. enam. copper wire interleaved with 2 mil . paper, alternating with 4 secondary sections, each consisting of 2 layers (29 turns per layer) of 19 S.W.G. enam. copper wire, interleaved with 2 mil . paper.

Each section is insulated from its neighbours by 3 layers of 5 mil . Empire tape. All connections are brought out on one side of the winding, but the primary sections may be connected in series when winding, only two primary connections per coil being brought out.

Measured Performance.

Primary inductance $=100 \mathrm{H}$.
(measured at $50 \mathrm{c} / \mathrm{s}$ with 5 V R.M.S. on primary, equivalent to 2.5 mW) Leakage inductance $=22 \mathrm{mH}$.
(measured at $1,000 \mathrm{c} / \mathrm{s}$)
Primary resistance $=250$ ohms.
The frequency response curve is given in Fig. 7.

TELEVISION RECEIVER
 4.-Frame Time Base and Sync Separator

A
SAW-TOOTH current wave with a repetition frequency of $50 \mathrm{c} / \mathrm{s}$ is needed for vertical deflection, and is generated by the frame time-base. Synchronism with the transmission is effected by locking it to the synchronizing pulses in the transmission. One limiter is employed to separate the sync puises from the picture signal and its output is used to lock both the line and frame time-bases. A further limiter is needed in the frame circuit in order to remove the line pulses. It is purely a matter of mechanical convenience that both these limiters are included in the same unit as the frame timebase proper.

The circuit of this unit is shown in Fig. I and the saw-tooth generator is V_{3}. The valve is an
variations $(6 \mathrm{~J} 7 \mathrm{G}, 6 \mathrm{~J} 7 \mathrm{GT}$, etc.). The valve is chosen in preference to a triode simply in order to keep down the number of different types of valve used in the complete equipment. V_{2} is of the same kind and is is also used in other units.

For the moment ignore the connections to the anode of V_{2} ancl to R_{14}. The circuit of V_{3} is then merely that of a grid-leak oscillator in which the $\mathrm{I}-\mathrm{I}$ ratio transformer T_{1} replaces the tuned circuit and in which the grid leak $\mathrm{R}_{12}+\mathrm{R}_{13}$ is returned to positive H.T. instead of to cathode; C_{8} is the grid capacitor. The valve commences to oscillate at a frequency determined by the constants of T_{1} and the stray capacitance, but so much charge is accumulated on C_{6} by the grid
across L_{1} acts against the H.I. to drop the anode voltage, but the induced voltage in L_{2} drives the grid potential in a positive direction. This further increases the anode current and results in the grid being still further driven positive. The induced voltage in L_{2} can be quite large-say, ioo volts-but the grid is not positive with respect to its cathode by this amount. Grid current flows into C_{6} and charges it so that its upper terminal becomes negative with respect to earth and cathode, and the grid-cathode volfage is the sum of the induced voltage in L_{2} and the voltage on C_{6}. The latter is nearly equal to the former, and the grid is never more than a few volts positive with respect to cathode.

The anode current does not

Fig. 1. The circuit diagram of the sync separator and frame time-base is shown here. V_{1} is the main sync separator and V_{2} the frame pulse separator ; V_{3} is the frame blocking-oscillator saw-tooth generator and V_{4} the output valve feeding the deflector coils.

EF37 connected as a triode; the characteristics needed are in no way critical and the $\mathrm{EF}_{3} 6$ can be used instead. As another alterna tive, there is the $6 \mathrm{~J}_{7}$ and its
current that after one-half cycle of oscillation the valve is cut off. More precisely, and starting at a time when the anode current is rising, the back E.M.F. developed
continue to rise indefinitely. The anode potential becomes very low because of the back E.M.F. across L_{1} and the rate of rise of current falls off. Because of this

View of the chassis with the components in place before wiring.
the induced E.M.F. in L_{2} starts to drop, which further reduces the rate of rise of current. The current very soon starts to fall and then the induced E.M.F. reverses its sign and becomes negative, and the valve is very rapidly cut off.

The terminal OP on the transformer, which is joined to C_{6}, is negative to earth by the voltage on C_{6}; it is at, perhaps, -90 V . Because L_{2} is a part of a resonant circuit, however, IP is not at the same potential and through the fly-wheel effect it swings still more negative. IP cannot swing more negative than OP by more than it was positive to OP when the valve was conductive-perhaps ioo V. Losses in the circuit make the swing less than this and in fact it is imperative to have high losses if the valve is to function properly as a blocking oscillator.

If the losses are such that the overswing is 50 per cent, then for 100 volts initially the overswing is to - 50 volts, and with -90 V on C_{6}, the grid swings negative to -140 V . This is followed by a positive swing and again with 50 per cent overswing, IP becomes ${ }_{25} \mathrm{~V}$ positive to OP and the grid
is $-90+25=-65 \mathrm{~V}$ to cathode.

This is well beyond cut-off so that the valve is kept cut off by the charge on C_{6} and cannot oscillate again until either this has
disappeared or the grid is driven sufficiently pcsitive by some external agency.

It is particularly to be noted that this action would not occur if the overswing were too great. Thus, if there were 90 per cent overswing, the first swing across L_{2} would be from + roo V to -90 V and the second to +8 I V . With -90 V on C_{8}, the grid would then be -9 V only with respect to cathode. The valve might well conduct and regeneration would start. The stage would, in fact, act as a class C "sine-wave" oscillator.

For the proper blocking action it is necessary to have a heavily damped resonant circuit and this is conveniently obtained from the core losses of the transformer. The heavy damping necessitates a high L/C ratio and tight coupling between the windings, both of which demand an iron-core. In this case, the core losses are not quite sufficient and an extra damping resistance R_{11} of $100 \mathrm{k} \Omega$ is added.

An exact analysis of the circuit is quite a complicated matter and is, fortunately, unnecessary, because the transformer constants are in no way critical. Almost any I-I ratio transformer of some 5-30 H inductance functions well;

The finished unit. The mounting bracket for R_{12} is clearly visible.

Television Receiver Constructionwith some components a damping resistor across one of the windings
this. This is more of a safety measure than anything, for the lock is actually so hard that R_{12}

This view shows the blocking-oscillator transformeri T_{1}; the coupler for the extension shaft of R_{12} is visible. A similar coupler is used on R_{20}.
is needed, but not with others. Constructional details of a suitable component are given in Fig. 2. It consists simply of an iron-stack of the kind commonly used for small speaker transformers and two windings each of 3,000 turns of No. 41 or 42 enamelled wire. Several layers of insulating tape should be placed between the windings.

When V_{2} is cut off the upper terminal of C_{6} is at about -90 V . If the grid leak were in shunt with it, it would discharge exponentially at a rate depending only on the CR product. The resulting sawtooth would be positive-going but very far from linear, for the output needed would be a large fraction of the total voltage acting in circuit.

To linearize the discharge the grid leak $R_{12}+R_{13}$ is returned to + H.T.I and the total voltage acting for the discharge of C_{6} is of the order of 500 V . The rate of discharge is governed by C_{6} $\left(\mathrm{R}_{12}+\mathrm{R}_{13}\right)$ and R_{12} is made variable to give some control over
can be varied over wide limits without affecting anything but picture height.

If no synchronizing signal is applied C_{6} discharges until the

A general view of the chassis with the valves removed, showing C_{2} and R_{5}.
grid potential becomes below the cut-off value. Anode current then flows in V_{3} and the whole cycle recom-
 mences. In the synchronized condition, a positivegoing sync pulse is applied to the grid before C_{6} has discharged so far and this is of sufficient amplitude

Fig. 2. Constructional details of the blocking-oscillator transformer. The laminations are Magnetic and Electrical Alloys Silcor I Pattern No. 74 or Richard Thomas \& Baldwin's Quality No. 3B, Type E \& I 86. The core is in no way critical and any lamination approximating to this size is satisfactory.
to drive the grid above cut-off and start the trigger action in V_{3}.

The pulse is obtained from V_{f}, which is normally cut off. It draws current on a sync pulse and this current flowing through L_{1} induces a positive-going pulse on the grid of V_{3}. In effect, therefore T_{1} is also used as a phasereversing pulse transformer. In this way a saw-tooth wave of moderately good linearity and with an amplitude of about 65 V is produced across C_{6}. A portion of this is applied to the output valve V_{4}. If R_{20} is zero, onchalf of the saw-tooth voltage is applied between the grid of V_{4} and earth since R_{14} and R_{15} are

each of $\operatorname{IM} \Omega$. Because of negative feedback from R_{19} the gridcathode voltage of V_{4} is less than this. V_{4} has $g_{m}=10 \mathrm{~mA} / \mathrm{V}$ and R_{19} is 220Ω, so that feedback reduces the gain by 3.2 times and the actual input to V_{4} is only $1 / 6.4$ of that across C_{6}. When R_{20} is not zero, further feedback occurs.

The resistors $R_{18}, \quad R_{17}$ are merely stoppers to inhibit parasitic oscillation. The output valve itself is resistance - capacitancecoupled to the deflector coils (see Part 3), two capacitors C_{8} and C_{9} in parallel and of $8 \mu \mathrm{~F}$ each being used because it is convenient to use small insulated types and such types are limited in their current rating. Both terminals must be insulated from earth.

The capacitance used is far from sufficient to give a linear
coil current and correction is obtained for this and for the nonlinearity of the scan voltage on C_{6} by the inverse curvature of the valve characteristic. To help in this the bias resistor R_{19} is rather higher than usual.

Negative feedback from R_{20} reduces the remaining non-linearity to negligible proportions and the variable resistor R_{20} acts as a " Picture Height" control.

Turning now to sync separation, V_{1} is the main sync separator and it is fed with the V.F. signal -the grid being connected to the cathode of the C.R. tube through a $\mathbf{0 . 1}-\mu \mathrm{F}$ capacitor. This component is not shown in Fig. I for it is most conveniently mounted outside this unit.

The sync pulses are positivegoing at this point and D.C. restoration is effected with R_{1} of $\mathrm{IM} \Omega$ and the grid-cathode path of V_{1}. This valve is operated as a straightforward limiter with a fairly low screen voltage and the separated negative-goingpulses in the anode circuit are fed to the line time-base and also through $\mathrm{C}_{2} \mathrm{R}_{5}$, -a critical time constant differentiating circuitto the frame limiter V_{2}.

The back edge of the first frame

The V.F. input socket can be seen in this photograph. When the unit is mounted it comes close to the base of the C.R. tube.
pulse is used for synchronizing, the line pulses being eliminated by V_{2}. The mode of operation was explained in the April issue, and it is to be noted that although the sync pulse output of V_{1} is negative-going the back edges of the frame pulses on the grid of V_{2} are positive-going. Consequently the pulses in the output of V_{2} are negative-going.

The waveforms to be expected at various points in the circuit are sketched in Fig. I. It should be noted that those shown for the input and output of V_{1} are for the line pulses, whereas the rest are all frame-scanning signals.

The reason for this is that the detail of the frame synchronizing pulses cannot readily be observed on an ordinary oscilloscope and sync-separator checking is thus more readily done by observing the line pulses.

The photographs illustrating this article show the form of construction adopted. Later articles will make clear its interconnection with other units and it is sufficient to say now that all connections save the V.F. input are taken to the tagboards by flexible leads. The chassis is mounted alongside the C.R. tube and hinged at the back so that

In this close-up of the unit most of the smaller parts are easily seen. The left-hand tagboard has six tags serving as junction points for the inter-unit connections.

Television Receiver Constructionfor maintenance and experiment it can be swung clear of everything else and easy access to any part of it can be obtained.
The chassis has a height of 9 in , a length of 94 in and a depth of $2 \frac{1}{2} \mathrm{in}$ and is bent from one piece of brass sheet. The valve shelf is supported by strips of $\frac{1}{4}$ in x 3/x6in brass rod screwed to chassis and shelf and is 5 in below the top of the chassis. The V.F. input connector is an ordinary wander-plug socket mounted on a small strip of Paxolin and screwed to the chassis, with a large clearance hole to reduce capacitance. C_{2} is mounted close to the top of V_{2}, but spaced from the chassis, again to reduce the capacitance to it. It serves as a useful anchorage point for the grid lead.
No detailed drawings of the chassis are given since it is expected that minor variations in layout will have to be made to suit the particular components used. It should not be necessary to increase the chassis size however, and no major changes of layout are likely to be needed to accommodate any normal components.
The two variable resistors are mounted on brackets with extension rods for their operation, these extension rods having sawcuts on the ends for screwdriver control. As they are set back by differing amounts the shaft centres can be only itin apart.

Fig. 3 shows the waveforms and their amplitucles at various points in the circuit. If the initial testing is done on the bench, and it is always a good plan to do this, a $1.7-\mathrm{k} \Omega$ resistor can be connected to the "Frame Coil" terminals in place of the coils themselves if this is more convenient. With such a resistor the high-voltage spikes on the wave on the anode of V_{4} will not be obtained since these are generated by the inductive back E.M.F. in the coils. V_{1} and V_{2} can, of course, only be

checked with a V.F. input.
When checking on signals it is well to check the output of V_{1} closely, and it is instructive to replace R_{4} by a variable resistor while so doing. With an oscilloscope set to show the line pulses and with a high value for R_{4}, a large output is obtained from V_{1} and the V.F. signal will be visible between the pulses as a feathery band of light. As R_{4} is reduced the pulse output will fall slightly, and the picture signal rapidly, until a critical value is reached at which the picture signal just disappears. Beyond this point, the pulse amplitude steadily decreases as R_{4} is reduced. The optimum value for R_{4} is slightly lower than the critical value for a V.F. input corresponding to at signal on the tube rather weaker than is ever likely to be required. This will usually be obtained with R_{4} about $20 \mathrm{k} \Omega$ and a pulse output of about 80 V will be secured. However, valves and resistor values have a fairly wide tolerance on their characteristics and in some cases some adjustment to the value of R_{4} may be needed.

This applies also to V_{2}, where the important resistor is R_{8}. If R_{8} is too high, V_{2} will give no output-if it is too low, line pulses will appear in the output as well as frame. The best method of checking is to remove V_{3} and connect an oscilloscope to the anode of V_{2}, replacing R_{8} by a variable resistor.
Starting with a high value for R_{8}, no output will be obtained. As R_{8} is reduced a critical value will be found at which frame pulses just begin to appear. Further reduction of \mathbf{R}_{8} results in increased amplitude of frame pulses until another critical value is reached at which the line pulses begin to show between the frame pulses. The optimum value lies between these two, but nearer the second than the first.
When testing without sync pulses, a variation of R_{19} has a

Fig. 3. Waveforms in the circuit. (a) and (b) are respectively the waveforms between the anode of V_{1} and earth and the grid of V_{2} and earth with V_{3} removed, a normal signal input and the oscilloscope adjusted to show components of line frequency ; (c) is the grid voltage of V_{2} with the oscilloscope adjusted to show frame frequency as in all the remaining waveforms. (d) shows the anode waveform of V_{2} with V_{3} removed and (e) with V_{3} in place. (f is the grid voltage of V_{3} and (g) the voltage across C_{6}, while (h) is the anode voltage of V_{4}.

COMPONENTS

The parts in this list are the ones employed in the original model. Any components of the same electrical specification and suitable physical dimensions can be used.

Capacitors

$\mathrm{C}_{1}, \mathrm{C}_{5}, \mathrm{C}_{8}, \mathrm{C}_{9}$. $8 \mu \mathrm{~F}$, electrolytic, 500 V working	Dubilier Drilitic
C_{2}	. 200 pF , mica, 500 V working	T.C.C. Type M
$\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{7}$		T.C.C. Type C.P. 43.5
C_{6}	. $0.05 \mu \mathrm{~F}$ paper tubular, 500 V	B.I.
Resistors		
$\mathrm{R}_{1}, \mathrm{R}_{13}, \mathrm{R}_{14}$,	$\mathrm{R}_{15} 1 \mathrm{M} \Omega$, \ddagger watt	Erie
$\mathrm{R}_{2}, \mathrm{R}_{4}, \mathrm{R}_{16}$	$\cdots 22 \mathrm{k} \Omega$, $\frac{1}{2}$ watt	Erie
$\mathrm{R}_{3}, \mathrm{R}_{10}$	-. $33 \mathrm{k} \Omega$, $\frac{1}{2}$ watt	Eric
R_{5}	. $220 \mathrm{k} \Omega$, $\frac{1}{4}$ watt	Erie
$\mathrm{R}_{6}, \mathrm{R}_{7}, \mathrm{R}_{6}$	- $47 \mathrm{k} \Omega$, $\frac{1}{2}$ watt	Erie
R_{8}	-. $15 \mathrm{k} \Omega$, $\frac{1}{2}$ wati	Erie
R_{11}	. $100 \mathrm{k} \Omega$, $\frac{1}{4}$ watt	Erie
$\mathrm{R}_{12}{ }^{2}$. $2 \mathrm{M} \Omega$, variable, linear law	Reliance Type T.W.
R_{17}	- 47Ω, $\frac{1}{4}$ watt	Erie
R_{18}	- $5 \mathrm{k} \Omega$, 15 watt	Welwyn
R_{19}	. 220Ω, I watt ${ }^{\text {w }}$	Erie
R_{20}	.. $2 \mathrm{k} \Omega$, variable, wire-wound, linear law	Reliance Type T.W.
Valves		
V_{1}	. EF50	Mullard
$\mathrm{V}_{2}, \mathrm{~V}_{3}$. EF37	Mullard
V_{4}	. CL33	Mullard

great effect on the frequency of the saw-tooth wave, but when V_{3} is synchronized varying R_{12} over a wide range has no effect other than to vary the amplitude of the wave somewhat.

The amplitude changes because the pulses see that the generator is regularly triggered, but the rate of discharge of C_{6} depends on the value of R_{12}. When synchronized the output is always smaller than when running free and of higher frequency.

Details of the power supply will be given later. The + H.T. 2 line is nominally 250 V , but can be anything from 240 V to 270 V without affecting the performance appreciably. The + H.T.r line is also not critical and the voltage is dictated more by the requirements of the line time-base than by the frame. So far as this unit alone is concerned anything over 350 V is satisfactory.

Testing with a 420 -volt supply for H.T.I and 250 V for H.T. 2 the cathode of V_{4} was at +6.6 V and the anode current 28 mA . V_{3} took 0.4 mA anode current with roo V at the junction of R_{9} and R_{10}.

NEW DOMESTIC RECEIVERS

A^{N} unconventional note is struck in the Ekco " Radiotime" in which the dominant feature of the front panel is an electric clock (the loudspeaker radiates from the base of the cabinet). Five medium-wave and one long-wave station are pretuned and selected by a rotary switch. The clock mechanism can be set. to switch the desired station
on or off at any required time and may also be used as an alarm. If no suitable programme is available the alarm takes the form of a fixed note ${ }_{3}$ the intensity of which is under the control of a four-position volume switch. The receiver is a superhet (3 valves + rectifier) and is fed by an internal frame aerial. The plastic case measures 12 in $\times 6$ in $\times 6$ 공in and the price is $£ 24$ 3s (purchase tax extra). Makers: E. K. Cole, South-end-on-Sea.

In the new Philips Model 462A a three-valve + rectifier circuit gives reception on short ($6.2-52$ metres), medium (190-575 metres) and long waves ($800-2,000$ metres) and the same type of valve (ECH2I) is used as frequency-changer and as combined I.F. and A.F. amplifier. The set is housed in a moulded cabinet with projecting translucent tuning scale, and an internal plate aerial is available for local station reception. The price of the Model 462A, which is made by Philips Lamps, Century House, Shaftesbury Avenue, London, W.C.2, is $£ 18$ I8s, plus $\& 4$ is 4 d purchase tax.

An 8 -inch permanent magnet loudspeaker fed from a 6V6 output valve giving 4 watts at ro per cent distortion are features of the new Philco Model A536W table model receiver. This set, which is housed in a birch plywood cabinet measuring $20 i n \times 17 \mathrm{in} \times 8 \frac{1}{4}$ in with walnut veneer front, employs a four-valve + rectifier superhet circuit and covers long, medium and short waves, the latter 16.67 to 50 metres. The horizontal tuning scale carries station names and is calibrated in Mc / s on the short-wave range. The makers are Philco Radio and Television Corporation of Gt. Britain, Wadsworth Road, Perivale, Greenford, and the price is $£ 19$ 19s, plus 646 s 5d purchase tax

Ekco " Radiotime" set with built-in electric clock switch.

Design Dała (13)

CORRECTED R.C. COUPLING

THE method of determining the value needed for an interstage-coupling capacitor was given in Design Data No. 12 and it was shown that in some cases the value becomes inconveniently large. It is possible to employ a smaller capacitance if additional elements are included in the circuit to produce an inverse

provide compensation for the deficiencies of the coupling elements $\mathrm{C}_{3} \mathrm{R}_{3}$ and not for decoupling ${ }^{1}$. They do provide some decoupling as well, it is true, but very little. By the very nature of the matter, the requirements of compensation and decoupling are opposing, so that if decoupling is needed additional components for this purpose must be provided.

The effectiveness of the compensation obtainable increases with the value of R_{2} and this component should always be as high as possible consistent with obtaining proper voltage on the valve. Then, too, compensation is best with a valve having an A.C. resistance high compared with R_{1}; it is better with a pentode than with a triode. For this reason, only the pentode condition is considered in the design formulae. It is also assumed that the grid leak R_{3} is large compared with the coupling resistance R_{1}, a condition which is nearly always found in practice.

The equations are given only for the case of a pulse input waveform because it is but rarely that compensation is needed with sine-wave inputs. The requirements with such inputs are so much less stringent than with pulses that in most cases there is no difficulty in making the coupling capacitance large enough.

One thing may be worth pointing out. For a given response, the total capacitance $\mathrm{C}_{1}+\mathrm{C}_{2}$ is greater with compensation than without, but the coupling capacitance itself is smaller. The advantage of this is that the coupling capacitor has a smaller stray capacitance to earth and so affects the high-

[^5]frequency response less and it will normally have a higher leakage resistance.

Formulae

The basic amplification is

$$
\begin{equation*}
\mathrm{A}=\frac{\mathrm{E}_{0}}{e_{g}}=g_{m} \mathrm{R}_{1} \tag{I}
\end{equation*}
$$

The pulse response is

$$
\begin{equation*}
x=\frac{\mathrm{I}}{\alpha-\mathrm{I}}\left[\alpha \epsilon^{-i \cdot \mathrm{~T}}-\epsilon^{-l \mathrm{~T}}\right] \tag{2}
\end{equation*}
$$

where t is reckoned from the moment of application of the pulse and

$$
\begin{aligned}
& T=C_{2} R_{1}=C_{1} R_{3} \\
& \alpha=R_{2} / R_{1}
\end{aligned}
$$

When t / T is small, this is very nearly

$$
\begin{equation*}
\boldsymbol{x}=\mathbf{I}-t^{2} / 2 \alpha \mathrm{~T}^{2} \tag{3}
\end{equation*}
$$

so that

$$
\begin{equation*}
\mathrm{T}=t / \sqrt{2 \alpha(\mathrm{I}-x)} \tag{4}
\end{equation*}
$$

Examples

Suppose an amplifier is needed for a $50-\mathrm{c} / \mathrm{s}$ sawtooth wave and that the permissible distortion is only 2 per cent. Let $R_{1}=10 \mathrm{k} \Omega, \mathrm{R}_{3}=0.25 \mathrm{M} \Omega$ what values are needed for C_{1} and C_{2} if (a) $R_{2}=10 \mathrm{k} \Omega$, (b) $\mathrm{R}_{2}=20 \mathrm{k} \Omega$?

For 2 per cent distortion, the response at time $t=1 / 50=0.02$ second can drop by 0.02 only, so $x=0.98$. From (4)

$$
\mathrm{T}=0.02 / \sqrt{2 \alpha(0.02)}
$$

Case (a)

$$
\begin{aligned}
\alpha & =\mathrm{I} \\
\mathrm{~T} & =\frac{\mathrm{O} .02}{\sqrt{ } \mathrm{~V} .04}=0 . \mathrm{I} \\
\mathrm{C}_{1} & =\mathbf{0 . 1 / 2 . 5} \times 10^{5}
\end{aligned}
$$

$$
\begin{aligned}
\alpha & =2 \\
\mathrm{~T} & =\frac{0.02}{\sqrt{ } 0.08}=0.07
\end{aligned}
$$

$=4 \times 10^{-7} \mathrm{~F}$ $C_{1}=0.07 / 2.5 \times 10^{5}$
$=0.4 \mu \mathrm{~F}$
$\mathrm{C}_{2}=0.1 / \mathrm{IO}^{4}$
$=10^{-5} \mathrm{~F} \quad=7 \times 10^{-6} \mathrm{~F}$
$=10 \mu \mathrm{~F}$
Case (b)

PORTABLE VALVE AND CIRCUIT TESTER

CURRENT and voltage tests of individual electrodes in valves may be checked under working conditions with the aid of the "Roberts Fault Analyser" marketed by Kerry's (Great Britain), Warton Road, London, E.15, which is a combined valve tester and multi-range test meter. Plug adaptors and cables are provided for all types of valve base and a valve may be transferred to the analyser for test under working conditions without disturbing the receiver chassis. Resistance measurements between individual electrodes and chassis may be made with the aid of the electrode selector switch provided. The voltmeter and ammeter are 34 -inch moving coil instruments with full-scale deflections of $500 \mu \mathrm{~A}$, and a reverse reading switch is provided. There are in all thirty ranges of A.C. and D.C. current and voltage up to 2.5 A and $\mathrm{m}, 000 \mathrm{~V}$, and resistance up to $0.5 \mathrm{M} \Omega$, or $5 \mathrm{M} \Omega$ with an external battery. The price is $£ 25$.

Cait qut a 25976 ? -then BRIMARIZE!

25A7G

Substitute a BRIMAR 25A6G and a SenTerCel Selenium Rectifier. Alterations are very simple and involve only minor changes of connections and the addition of a SenTerCe! Selenium rectifier to replace the rectifier section of the ${ }_{25} A_{7} G$. This rectifier is very small and is readily fitted to most chassis. The necessary circuit alterations are shown on the chart below.

Brimar RADIO VALVES

解mouncing The flutomatic
 ITPolyphonic Radiogram
 WITH RECORD CHANGER，ESSENTIALLY A

QUALITY INSTRUMENT，FREE FROM CABI－ NET＂DIALECT，＂INCORPORATING THE PHASE INVERTER SPEAKER，AND SEVEN VALVE，THREE BAND，TANDEM COUFLED， VARIABLE SELECTIVITY SUPER－HET CHAS－ SIS，WITH PARAPHASE TRIODE OUTPUT． PRICE ．．．E82－10 plus Purchase Tax NON AUTOMATIC MODEL，IS NOW AVAIL－ ABLE WITH PLAIN TURNTABLE，AND THE LATEST TYPE CABINET，WHICH IS EVEN MORE ATTRACTIVE，AT THE ORIGINAL PRICE ．．． $\mathbf{E 6 7 - 1 0}$ plus Purchase Tax

DEMONSTRATIONS CAN BE ARRANGED at the following Agents：

LONDON

Wallace Heaton
G．E．Samways Ltd．，Hazel Grove
SURREY
West End Radio，Farnham
Weybridge Radio Electric Co．
W ALES
Sound Ltd．，Cardiff
SHEFFIELD
Needham Engineering Co．，Ltd．

JERSEY，C．I．
Sound Services，St．Helier

LEEDS

Valiance \＆Davidson，Ltd．（\＆branches）
I．O．W．
C．C．Clark \＆Sons，Sandown
NORWICH
Pank＇s Radio
NEWQUAY
C．C．Gerry

BRISTOL Merriotts，Ltd． BARNSTAPLE B．Smith DERBY Dalton \＆Sons，Ltd． READING Barnes \＆Avis EDINBURGH
Precision Services，Ltd． ANDOVER Thomas Lynn

SOUND SALES Ltd． 575 t．Matitist Lone wC2

Works：Farnham Surrey－Farnham 6461 Phone：TEM． 4284

Resistors produced by the cracked car－ hon process remain stable $10 \pm 1 \%$ of nitial value．
\star Tolerances $\pm 1 \%$ $\pm 2 \% \pm 5 \%$

Low temperature co－efficient

Cอロ狍 resistor

NOISE FACTOR 3.-Design of Receivers or Amplifiers for Minimum Noise Factor

IN this concluding instalment the design and relative performance of various kinds of input stage for R.F. and I.F. amplifiers will be examined.

To understand the principles of input circuit design for minimum noise factor it is necessary to form a clear picture of the various noise sources and the circuit quantities which determine their effect in relation to the wanted signal. This may be done by means of a simple equivalent circuit such as that shown in Fig. I.

The aerial or other source of signal is usually coupled to the first valve via some network consisting of at least one circuit tuned to resonance; this acts as a transformer, and the aerial therefore appears to the valve as a resistance having some value R_{A} which clepends on the transformer ratio. If E is the signal voltage appearing across R_{A}, then as explained in the first part of this article, the available signal power from the aerial is $\mathrm{E}^{2} / 4 \mathrm{R}_{\mathrm{A}}$; this is independent of the transformer ratio, so that we are at liberty, within practical limits, to alter the coupling between the aerial and the tuned circuit to obtain any preferred value of R_{A}. Any number of purely reactive elements may be introduced into the coupling network, and so long as resonance is maintained the source of signal can be pictured as a generator connected between grid and cathode of the first valve, having an internal resistance R_{A} and providing either a constant available signal power $P_{s}=\mathrm{E}^{2} / 4 \mathrm{R}_{\mathrm{A}}$ or an open circuit signal voltage $E=\sqrt{4 \mathrm{R}_{\mathrm{A}} \mathrm{P}_{\mathrm{s}}}$. It will be, recalled that the definition of noise factor assumes a source of signal at room

temperature T , so that the available noise power from it is KTB, where $\mathbb{K}=$ Bolzmann's constant and $B=$ energy bandwidth, and its open circuit noise voltage is $\sqrt{4 \mathrm{KTB} \mathrm{R}} \mathrm{A}$. The source, as seen by the first valve, can therefore be fully represented by the portion of Fig. 1 to the left of the dotted line. The right-

By L. A. MOXON,
B.SC., A.M.I.E.E. hand part of this equivalent circuit is required to account for valve and circuit noise and relate them to the aerial noise and signal in such a way that the signal/noise ratio at the terminals AB corresponds to the signal/noise ratio as fed to the second stage.

The input circuit inevitably possesses a certain amount of resistance ; the simplest and most usual case is that of a single resonant circuit, and if R_{c} is its impedance as viewed by the valve, the effect of this on the sigual is visualised by regarding R_{c} as a load connected in parallel with the source of signal. In addition, R_{c} must be regarded as a generator of thermal noise having an internal impedance R_{c} and an open circuit voltage equal to $\underset{\text { Both of }}{\sqrt{4 n T B}}{ }_{c}$ effects are accurately represented in Fig. 1. For more complicated input circuits it is possible to deduce an equivalent value for R_{c} to represent all the losses, and the
and assigning to R_{c} a temperature greater than room temperature.

Data on valve shot noise is usually provided in the form of equivalent noise resistance (E.N.R.). This is not an actual resistance, but a mathematical device which happens to be convenient, and the term "resistance" is in some ways unreasoning which follows is not materially affected. It will be noticed that a temperature $n \mathrm{~T}$ has been assigned to R_{c}; this is of course room temperature in the case of circuit losses, but as explained later, it is possible to allow for transit-time losses at high frequencies by including them in R_{c}
fortunate; the concept may be arrived at by imagining a generator of voltage E_{n} applied between grid and cathode to simulate the effect of valve noise, then quite arbitrarily writing $\sqrt{4} \mathrm{KTBR}_{\mathrm{n}}=$ E_{n} and calling R_{n} the valve noise resistance. A particular virtue of this trick for our purpose here is that it enables all the different sources of noise to be described in similar language. The physical mechanism of valve noise is best appreciated by forgetting about E.N.R. and picturing the flow of electrons from cathode to anode ; if the anode current is constant, the average number of electrons hitting the anode in any given unit of time is fixed, but likening the electron stream to a hail of individual particles or "shot," it is evident from the laws of chance that there will be some slight variation in the number of electrons arriving in equal intervals of time. The shorter the intervals which the receiver is capable of investigating (i.e, the wider its bandwidth) the greater the randomness or "noise." From this physical picture, ignoring for the moment the possibility of feed back, it is clear that the valve noise output is independent of the resistance (R_{A} in parallel witb R_{c}) between grid and cathode, and therefore requires to be represented as shown in Fig. r.

In the case of pentodes the random element in the sharing of current between screen and anode is additional to the normal shot effect. This is particularly harmful on accoment of the inverse feed-

Noise Factor-

back in the cathode lead which is usual at high frequencies. Since the total cathode current is unaffected by fluctuations in the partition of current between anode and screen, cathode feedback has no effect on partition noise, although it reduces the signal,

Splitting R_{c} into two parallel components, coil losses R_{e} and transit-time loss R_{t}, it can be shown that the "temperature" to be assigned to R_{c} is given by

$$
\frac{R_{t}+5 R_{e}}{R_{t}+R_{e}} T, \text { say, } n T
$$

No account has been taken in these equivalent circuits of noise

Fig. 2. Equivalent input circuit for pentode showing components of valve noise.
together with the other sources of noise ; it is therefore necessary, if cathode feedback is present, to split the E.N.R. of a pentode into two components, cathode E.N.R. ($\mathrm{R}_{\text {nc }}$) and screen E.N.R. (R_{ns}), as shown in Fig. 2, and represent the feedback by the noiseless resistance R_{f}, or, in other words, as a reducing agent acting on all the voltages shown to the left of it.

At sufficiently high frequencies an appreciable change of grid voltage takes place during the time required for an electron to travel from cathode to grid, and the resulting disturbance of the electron distribution in the cathode-grid and grid-anode spaces induces an external current in the grid-cathode circuit. This current has a component in phase with the applied voltage, which constitutes additional loading of the input circuit, and the effect of this on the signal, and on the noise voltages already discussed, is accounted for by an appropriate reduction in the value of R_{c}. Since there is a random element in this effect on account of its electronic nature, it constitutes an additional source of noise, and North and Ferris ${ }^{1}$ have shown that it is equivalent to that obtained by assigning a noise temperature of five times room temperature to the transit-time loss resistance.

[^6]originating in stages after the first. If this is appreciable each stage may be treated separately in the first instance and the results combined by means of equation (I) in Part 1 , namely, $N_{R}=N_{1}+$ $\frac{\mathrm{N}_{2}-1}{\mathrm{G}_{1}}+\frac{\mathrm{N}_{3}-\mathrm{I}}{\mathrm{G}_{1} \mathrm{G}_{2}}+\ldots$ etc. ${ }^{2}$ It is unusual for terms after the second to be significant.

PEntodes versus Triodes

It is common practice to use a pentode as the first valve in receivers. Better noise factor is obtained with high-slope pentodes (such as the Mullard EF_{50} and Mazda SP_{4} I) than with low-slope pentodes because signal power output increases as the square of the slope, whereas as long as the anode and screen currents are constant, shot noise is unchanged. However, even high-slope pentodes usually have an E.N.R. in the region of 1,500 ohms, contrasting with 300-500 ohms for typical high-slope triodes. This difference is entirely due to screen noise, and in the Mullard RL.7, now known as the EF54, the screen current and therefore the screen noise has been reduced by a special alignment of grids, thereby achieving an E.N.R. of 700 ohms or so; even of this, over 400 ohms is screen noise, so that considerable further improvement is to be

[^7]expected, and is obtained, by eliminating the screen altogether, i.e. by using a triode. A further advantage of the triode is that signal-lo-noise ratio is not affected by feedback so long as there is adequate stage gain. The difficulty in using triodes due to positive feedback through the grid-anode capacity has been successfully tackled both by earthed-grid operation and by neutralization.

The theoretical analysis which follows is confined to Fig. I, because the difficulty of analysing valve input impedance into transit time and feedback components usually makes it impossible to apply Fig. 2 in practice. In the case of triodes K_{f} can be ignored because in the absence of R_{ns} it has no effect on signal-to-noise ratio, and in the case of pentodes it has been found that taking $n=1$ or 2 and using R_{c} to represent the total loss- $R_{\mathrm{e}}, \mathrm{R}_{\mathrm{t}}$, and R_{f} in parallel-gives a close enough approximation to the truth unless R_{f} is very small.

Calculation of Noise Factor

Referring to Fig. I, the noise generator of voltage $\sqrt{4 \mathrm{KTBR}_{A}}$ produces a voltage

$$
\frac{\mathrm{R}_{\mathrm{C}}}{\mathrm{R}_{\mathrm{A}}+\mathrm{R}_{\mathrm{C}}} \cdot \sqrt{{ }^{4 \mathrm{KTBR}_{\mathrm{A}}}}
$$

at the grid of the valve, and similarly the voltage $\sqrt{4 \mathrm{~K} n \mathrm{TBR}_{c}}$ becomes $\frac{\mathrm{R}_{\mathrm{A}}}{\mathrm{R}_{\mathrm{A}}+\mathrm{R}_{\mathrm{c}}} \cdot \sqrt{\mathrm{V}^{\mathrm{K} n \mathrm{TBR}}} \mathrm{c}$ at the grid. In addition there is the valve noise voltage $\sqrt{4 \mathrm{KTBR}_{\mathrm{n}}}$. The signal voltage at the grid is $\frac{E R_{c}}{R_{A}+R_{c}}$. The ratio S of signal-to-noise power available at AB is the saunc as the ratio of (signal

Fig. 3. Variation of noise factor with R_{A} for $R_{c}=r, 000 \Omega$ and $\mathrm{R}_{\mathrm{n}}=700 \Omega$.
volts) ${ }^{2}$ to (noise volts) ${ }^{2}$, and the total (noise volts) ${ }^{2}$ is found in the usual way by adding the squares of the individual voltages listed
above. A few lines of elementary but rather tedious algebra lead to the expression

$$
\begin{equation*}
\mathrm{S}=\frac{\mathrm{E}^{2}}{4 \mathrm{KTBR}_{\mathrm{A}}\left[\mathrm{I}+n \mathrm{R}_{\mathrm{A}} / \mathrm{R}_{\mathrm{c}}+\mathrm{R}_{\mathrm{n}} / \mathrm{R}_{\mathrm{A}}\left(\mathrm{I}+\mathrm{R}_{\mathrm{A}} / \mathrm{R}_{\mathrm{c}}\right)^{2}\right]} \tag{8}
\end{equation*}
$$

The aim is therefore to make R_{n} / R_{c} as small as possible.

The valve noise resistance R_{n}

Now $E^{2} / 4 \mathrm{~K}^{2} \mathrm{TBR}_{\mathrm{A}}$ is the ratio of available signal-to-noise power for the aerial alone and for the perfect receiver
$\mathrm{S}=\mathrm{I}$ when $\mathrm{E}^{2}=4 \mathrm{KTBR}_{\mathrm{A}}$. The expression inside the brackets is therefore the number of times by which the signal power $\frac{\mathrm{E}^{2}}{4_{\mathrm{A}}}$ available from the aerial must exceed KTB in order to make $\mathrm{S}=\mathrm{I}$; this is the noise factor N_{r} as defined in Part I and the required expression for noise factor is therefore
may be roughly estimated for valves with oxide-coated cathodes from the following expression, in which the first term represents cathode noise. ${ }^{3}$ The second term is screen noise and disappears in the case of triodes. R_{n} is in ohms, I_{s} and I_{p} are the screen and anode currents in milliamps and G_{m} is the mutual conductance in milliamps per volt.

$$
R_{\mathrm{n}}=\frac{A}{\mathrm{G}_{\mathrm{m}}} \times 10^{3}+\frac{20}{\mathrm{G}_{\mathrm{nn}}^{2}} \cdot \frac{\mathrm{I}_{\mathrm{S}} \mathrm{I}_{\mathrm{p}}}{\mathrm{I}_{\mathrm{s}}+\mathrm{I}_{\mathrm{p}}} \times 10^{3}
$$

A depends on cathode tempera-

$$
\begin{equation*}
\mathbf{N}_{\mathrm{r}}=\mathbf{I}+n \mathbf{R}_{\mathbf{A}} / \mathbf{R}_{\mathrm{c}}+\mathrm{R}_{\mathrm{n}} / \mathbf{R}_{\mathbf{A}}\left(\mathbf{I}+\mathbf{R}_{\mathbf{A}} / \mathbf{R}_{\mathrm{c}}\right)^{2} \cdots \tag{9}
\end{equation*}
$$

ture and valve geometry,
 and is of the order of 2.2 for oxide-coated cathodes. © The resistance R_{C} consists partly of coil losses (this part of it being, as a rule, roughly proportional to wavelength), and valve input losses which increase as the square of the frequency. For the EF50,

> Fig. 4. Variation of noise factor with frequency for a pentode (EF54.) Full line calculated. from valve data, neglecting coillosses Experimental observations indicated by points.

Optimum Design

From equation (9), N_{r} has a minimum value when
$\mathrm{R}_{\mathrm{A}}=\mathrm{R}_{\mathrm{c}} \sqrt{\frac{\mathrm{R}_{\mathrm{n}}}{\mathrm{R}_{\mathrm{n}}+n \mathrm{R}_{\mathrm{c}}}}$, and since the condition for maximum gain is obtained (in the absence of feed back) when $\mathrm{R}_{\mathrm{A}}=\mathrm{R}_{\mathrm{c}}$, adjustment of the input circuit for maximum gain must give the wrong answer -although if R_{n} is larger than $n \mathrm{R}_{\mathrm{c}}$ the error is small. The optimum is not very critical, as illustrated in Fig. 3 for a typical set of conditions, and can be found easily by trial and error.

Substituting the optimum condition in equation (9) we get $\mathrm{N}_{\mathrm{r}}($ minimum $)=\mathrm{I}+2 \mathrm{R}_{\mathrm{n}} / \mathrm{R}_{\mathrm{e}}+$

$$
\begin{equation*}
2 \sqrt{\mathrm{R}_{\mathrm{n}} / \mathrm{R}_{\mathrm{c}}\left(n+\mathrm{R}_{\mathrm{n}} / \mathrm{R}_{\mathrm{c}}\right)} . \tag{го}
\end{equation*}
$$

the input loss resistance is of the order of $10^{7} /(\text { (requency })^{2}$ ohms, and for the EF54 the figure is about 50 per cent greater.

Fig. 4 shows the variation with frequency of the minimum noise factor obtainable with the EF54 as calculated from equation (9) from valve data, neglecting coil losses and putting $n=1$, together with a number of measured points obtained with typical circuits. The discrepancy between theory and experiment at the lower frequencies can be accounted for by coil losses.

By putting $n=\mathrm{I}$ or 2 , the errors inherent in applying the circuit of Fig. I to pentodes tend to cancel each other since R_{c} is in

[^8]effect partly at room temperature' partly at five times room tempera-

Fig. 5. Basic circuit of earthedgrid triode.
ture, and partly, since it includes, the feedback resistance, at zero noise temperature. The errors in calculating the optimum value of R_{A} are likely to be rather more appreciable than the errors in predicting noise factor, and in practice it is best to find the best value of R_{A} by trial and error taking the calculated value as a rough guide.

In the case of acorn pentodes the values obtained for R_{n} and R_{c} are both about ten times the values for the EF54, and the performance obtained is accordingly very similar.

Bandwidth Considerations

In the absence of R_{f}, the bandwidth of the input circuit is determined by R_{A} and R_{c} in parallel and by the input capacity C , and may be expressed as tollows :-

$$
\begin{equation*}
B_{\text {in }}=\frac{\mathrm{R}_{\mathrm{A}}+\mathrm{R}_{\mathrm{c}}}{2 \pi \mathrm{C} \mathrm{R}_{\mathrm{A}} \mathrm{R}_{\mathrm{c}}} \tag{I2}
\end{equation*}
$$

There is a minimum practicable value for C , and therefore if R_{A} is chosen for minimum noise factor, a maximum value for $B_{\text {in }}$ is automatically fixed. Now $B_{i n}$ must obviously be made greater than the required overall bandwidth of the receiver, and for many radar or television purposes it may be necessary in consequence to depart from the minimum noise factor condition. If $B_{\text {in }}$ is increased by reducing R_{A} considerable departure from the optimum condition is possible without serious loss of performance but the not uncommon practice

Noise Factor-

of increasing $\mathrm{B}_{\text {in }}$ by connecting a damping resistance across the input circuit (i.e., reducing R_{c}) has a much more serious effect, as can be appreciated from inspection of equations (9) and (io)
For other applications, such as communication receivers, a lower value of $B_{i n}$ may be required in order to improve preselection. In this case R_{A} may be increased slightly above the optimum value, hut any further reduction of $\mathrm{B}_{\text {in }}$ should be effected by increasing C whilst keeping the input circuit losses as low as practicable.

With very wide bandwidths the noise factor increases for two reasons. In addition to the neces sity of departing from the optimum value of R_{A}, the stage gain drops and noise from the second or even later stages ultimately becomes appreciable. An estimate of this effect may be made with the aid of equation (I).

Triode V.H.F. Amplifiers

The Earthed-Grid Triode. Triode amplifiers have been developed for radar, in which the signal is applied to the cathode and the grid earthed so that it acts as a shield between anode and cathode as demonstrated in Fig. 5. With suitable triodes this reduces the anode-cathode capacity to a low value, but inverse feedback from anode to cathode via the internal

Fig. 6. Measured noise factor of CV_{53} earthed-grid triode.
resistance of the valve is an inherent feature. This feedback is such as to reduce equally all fluctuations of anode current whether due to shot effect, thermal noise, applied signal or any other cause, and can be represented in the equivalent circuit by attributing a noiseess input impedance R_{f} to the valve. From elementary valve theory, a small change v of grid
cathode voltage produces an anode current change i which is equal to $v(\mu+1) /\left(R+R_{a}\right)$ where R is the anode load and R_{a} the internal impedance of the valve. In the absence of grid current, anocle and cathode current are the same so that R_{f} is equal to v / i, or in other words to $\left(\mathrm{R}+\mathrm{R}_{\mathrm{a}}\right) /(\mu+\mathrm{I}) . \quad \mathrm{R}_{\mathrm{f}}$ may be regarded as connected
S.26A (or CV_{53}) which use the disc seal type of construction and have the following constants :-
$\mathrm{R}_{\mathrm{n}} \bumpeq 430$ ohms ; $\mu=100 ; \mathrm{R}_{\mathrm{a}}=$ 20,000 ohms ; anode-grid capacitance $=1.7 \mathrm{pF}$; anode-cathode capacitance $=0.035 \mathrm{pF}$; cathodegrid capacitance $=4 \mathrm{pF}$.
Typical experimental figures for the variation of CV_{53} performance

with frequency are shown in Fig. 6. Comparison with Fig. 4 shows the substantial improvement obtainable by using a triode at the higher frequencies.

Fig. 7 shows the circuit arrangement of a typical pre-amplifier using the CV53, which was developed for comection in front of a $200 \mathrm{Mc} / \mathrm{s}$ radar receiver with a pentode R.F. stage, and improved its noise factor by 6 db , witll a power gain of about 17 db .
Other $t_{\text {riodes }}$ designed for earthed-grid operation include the RL 37 (pressed-glass base) and the CV1 39 (miniature base). These valves are capable of giving comparable performance to the CV_{53}, but necessarily have rather higher capacities, and therefore reduced gain for a given bandwidth; so that when using a CVI39 or RL37 amplifier in front of a relatively noisy device such as the average mixer, it is usually advisable to use two stages.

The Neutralized Triode.-Neutralization is one of the oldest devices for obtaining satisfactory R.F. amplification with triodes, but its application to the reduction of noise factor at metre wavelengths is a recent development of American origin. It bas
been found to offer considerable advantage over the earthed-grid triode for very wide bandwidths on account of the greater gain, and one of the methods of neatralization which have been employed is illustrated in Fig. 8. Neutralization is effected by tuning the anode-grid capacity to resonance with a suitable inductance. The low input impedance of the earthed-grid second stage prcvides adequate damping of the first stage anode circuit without introducing additional thermal noise.

For narrow bandwidths at the higher frequencies the performance of triodes is determined mainly by the transit-time loss. The use of neutralization, by increasing the possible gain confers an additional degree of freedom on the valve and circuit designer alike and an appreciable improvement (about $1 \frac{1}{2} \mathrm{db}$ at $45 \mathrm{Mc} / \mathrm{s}$) relative to the CV_{53} has been claimed for the American $6 \mathrm{AK}_{5}$ pentode connected as a neutralized triode for narrow bandwidths. At very wide bandwidths, somewhat greater improvements are obtainable and noise factors of 4 or 5 db can bc realised with neutralised triodes at $20 \mathrm{Mc} / \mathrm{s}$ bandwidth compared with 7 or 8 db for pentodes. R_{A} is then small compared with R_{c}, so that (9) reduces to $N_{r} \bumpeq$ $\mathrm{I}+\mathrm{R}_{\mathrm{n}} / \mathrm{R}_{\mathrm{A}}$ and (12) to $\mathrm{B}_{\mathrm{jn}} \bumpeq \sim$ $1 / 2 \pi \mathrm{CR}_{\mathrm{A}}$. Combining these results,
$\mathrm{N}_{\mathrm{r}} \bumpeq \mathrm{I}+2 \pi \mathrm{CB}_{\text {in }} \mathrm{R}_{\mathrm{n}} \ldots$ (14)
C is the total effective input capacity and includes the " Miller effect" so that the lower R_{n} of a triode may be offset by the higher C. With suitable triodes this is not serious.

Some examples of alternative forms of simple aerial-to-valve
coupling networks are illustrated in Fig. 9. Main factors affecting
in all the above cases except (c) and (e) when it is somewhat smaller.

Fig. 9. Alternative forms of aerial-to-valve coupling.
the choice of circuit include the bandwidth required, impedance of the aerial, mixer or other source of signal and probable variations of source impedance. The value of R_{A} in terms of the actual source impedance R_{s} is shown in the following table :-

Fig 9	$\mathbf{R}_{\text {A }}$
(a)	$\omega^{2} \mathrm{~L}^{2} / \mathrm{R}_{\mathrm{s}}$
(b)	$\mathbf{R}_{\text {S }}$
(c)	$\frac{\mathrm{C}_{\mathrm{s}}^{2}}{\mathrm{C}^{2}}\left(R_{\mathrm{a}}+\frac{1}{\omega^{2} \mathrm{C}^{2} R_{\mathrm{c}}}\right)$
(d)	$\mathrm{L}^{2} \mathrm{R}_{\mathrm{s}} / \mathrm{M}^{\mathbf{2}}$
(c)	1/ $\omega^{2} \mathrm{C}_{\mathrm{s}}{ }^{2} \mathrm{R}$
(/)	$\omega^{2} L_{1}{ }^{2} / R_{\text {S }}$

The input circuit bandwidth (with no feedback) is approximately as given by equation (12)

Fig. 8. Circuit of neutralized triode R.F. amplifier.

Examples (a) and (b) are only usable when R_{s} is (or can be made) approximately the right value. In other cases it is possible to cover a relatively wide range of requirements. Example (c) is interesting because when $\mathrm{R}_{\mathrm{s}}=1 / \omega \mathrm{C}_{\mathrm{s}}$ the value of R_{A} is relatively insensitive to the value of R_{s}, and therefore both the noise factor and bandwidth are nearly independent of R_{s}, but a disadvantage is the dependence of input circuit tuning on the value of R_{s}.

Centimetre and Decimetre Wavelengths

The previous paragraphs in this section are applicable primarily to frequencies up to the order of 300 Mc / s. In microwave technique the first amplifying valve is normally preceded by a crystal mixer, and the noise factor is given by equation (2), Part I, i.e.,

$$
N_{r}=L\left(T_{r}+N_{2}-r\right)
$$

The designers' object therefore is to achieve the lowest possible values of L, T_{r} and N_{2}, but the conversion loss (L) and the N.T.R. (T_{r}) are mainly in the hands of the crystal manufacturers leaving only the I.F. noise factor N_{2} to the receiver designer. At io cms., the best values achieved for $\mathrm{L}, \mathrm{T}_{\mathrm{r}}$, and N are respectively about 3.0 , r.o and 1.6 , giving a noise factor of 4.8 times or 7 db .

When R.F. stages are employed at decimetre wavelengths the

Noise Factor-

theory becomes much more complicated on account of transit time. It has been assumed, for example, that the various noise components are completely random with respect to one another. This is not true of the noise associated with the transit-time input loss, but at low frequencies and with a resistive input circuit, this noise is in phase quadrature with the shot noise and can be treated in the same way as if it was random, although a slight improvement in noise factor is sometimes possible by detuning the input circuit, since this can alter the phase of the induced noise and bring about some degree of noise cancellation. At very high frequencies involving large transit angles, the assumption of phase quadrature breaks down completely.

Conclusion

The importance of designing for good noise factor is most apparent when the aerial noise temperature
is low and range is limited by internal rather than external noise.

In the region from $70 \mathrm{Mc} / \mathrm{s}$ or so down to the frequency at which the ionosphere becomes an effective absorber of radiation, the noise from the Milky Way (and sometimes solar noise) is so great that little advantage results from striving after the last few db of receiver perfection. The amateur working at $60 \mathrm{Mc} / \mathrm{s}$ for example, will find a 10 db noise factor just as good as a 4 db noise factor for normal working, but under "freak" conditions when longdistance communication is possible the noise level should be lower and the 6 db difference may well be vital. At 30 or 40 metres and upwards, interference and atmospherics rather than receiver noise are usually the limiting considerations.

The reader interested in a more detailed study of this subject is referred to a paper by the author entitled, " The Noise Characteristics of Radar Receivers," published in Part IIIA of the Journal I.E.E.

SHORT-WAVE CONDITIONS

Expectations for May

By T. W. BENNINGTON (Engineering Division, B.B.C.)

DURING March maximum usable frequencies for this latitude decreased very slightly during the day and increased considerably during the night. These are the normal seasonal variations, which should now continue towards midsummer.

A large amount of ionosphere storminess occurred during the month, much of it connected, no doubt, with a giant sunspot group which crossed the sun's disc between March 3rd and 17 th and was on the central meridian on March roth. On the 3 rd, during one of the ionosphere storms, the Aurora Borealis was seen in Scotland and Northern England. Though it is difficult, because of their number, to separate, in some cases, one ionosphere storm from another, the following were the periods of most disturbance: 2nd-4th, 8th-9th, IIth-17th, 22 nd-23rd, and 26th-31st.

Forecast.-Daytime M.U.F.s for nost transmission paths should continue to decrease during May, and the peak M.U.F.s should be considerably lower than during April.

Night-time M.U.F.s should, on the other hand, be considerably higher than during the previous month. Moderately high frequencies will remain of use for considerably longer periods than during April, because of the longer duration of daylight at this end of the circuits. The net result is that during May there will be less change in the working frequencies as between night and day over most transmission paths than is the case at present.
Except on southerly transmission paths communication on exceptionally high frequencies (like the $28-\mathrm{Mc} / \mathrm{s}$ band) will be relatively infrequent, and, in particular, this frequency is not likely to be of much use for transatlantic communication during May. Relatively high frequencies will remain usable during the night and II Mc/s is about the lowest that will be really necessary at any time.
For distances up to about 1,800 miles transmission during the daytime will be controlled largely by the E and F_{1} layers, and for these
distances daytime as well as night--time working frequencies should be higher than during April. Sporadic E should increase considerably in the frequency of its occurrence during the month, and transmission by way of this medium up to about I, 400 miles may be frequently possible on exceptionally high frequencies.
Below are given, in terms of the broadcast bands, the working frequencies which should be regularly usable during May for four longdistance circuits running in different directions from this country. In addition, a figure in brackets is given for the use of those whose primary interest is the exploitation of certain frequency bands, and this indicates the highest frequency likely to be usable for about 25 per cent of the time during the month for communication by way of the regular layers:-
$\left.\begin{array}{lllll}\text { Montreal : } & 0000 & 15 \mathrm{Mc} / \mathrm{s} & (22 \mathrm{Mc} / \mathrm{s}) \\ & 0300 & 11 & " & (19 \\ & 0900 & 15 & " & (23 \\ \hline\end{array}\right)$

During May ionosphere storms are not usually prevalent, nor are the effects of those which do occur usually particularly disastrous to radio communication. At the time of writing it would appear that storms are more likely to occur during the periods 2nd-3rd, 6th-8th, 16th-I7th, 23rd-25th and 29th-30th, than on the other days of the month.

VALVE STANDARDIZATION

DETAILS of the new 8-pin base of pressed glass construction introduced by the British Valve Manufacturers' Association appeared in our November, 1946, issue. Since then an alternative version of the Type B8A base has been agreed; the centre spigot may be omitted in some cases, though it will be neces. sary to continue to provide a centre hole in all B8A valveholders in order that they may accommodate either type. The raised boss on the side of the valve base will continue to be used in both types to locate the valve pins correctly in the base.

BELLING-LEE QUIZ

(No. II)
Answers to questions we are often asked by letter and telephone

\dagger
Shows the Belling \& Lee inverted " V" television aerial mounted in the attic.
Question 40: Why the funny shape? (asked many limes at the components exhibition).
Answer 40: The purpose behind its design was the production of an aerial somewhat more compact than the orthodox dipole, and one that could be erected in the loft of an average house and give good results in such location. This aim has been achieved within certain limits.

The inverted "V" form lends itself to erection in the attic or loft of the average house, high up under the ridge, well away from plumbing and conduits. Installation engineers appreciate the impracticability of installing a normal dipole in such locations, while the indoor installation of a dipole and reflector array is well nigh impossible.

It should only be used under - conditions of high field strength, and it is suggested that up to ten miles for outdoor use and five miles for attic use should be taken as a general guide, for distance from transmission stations.

Even when using a simple dipole many television installations require the use of resistive attenuations to reduce the strength of the incoming signal to the appropriate level.

A new television aerial, both interesting to look at and efficient to use

With this new aerial such attenuation is not likely to be necessary, yet the polar diagram shows that the aerial has the advantage of being directional, with a very high ratio of maximum/minimum pickup. This feature is most useful in removing unwanted reflection "ghosts" from gas holders, tall steel structures, etc., and for the improvement of signal-to-noise ratio in localities where interference is troublesome, particularly from electronic heating apparatus, e.g., diathermy. Hitherto, the only answer has been the use of a relatively expensive dipole and reflector array even in districts where the use of such an acrial necessitated the generous application of resistive attenuation. The effective band width is somewhat greater than that of the conventional type, and thus takes full advantage of the increased band width now being transmitted on the vision channel.

Below we show polar diagrams of each of our television aerials. That in the centre applies to the new inverted "V."

1. L_{502} and L_{392} series comprising
dipole and reflector. Gain in maximum position relative to a simple dipole (Fig. 3) +6 db .

Vision shown solid, sound shown dotted.
2. Inverted " V " compressed aerial described above.
L605, L606. Gain in maximum position relative to a simple dipole 6 db . Sonnd and vision.
3. Simple dipole sound and vision.

As the methods of mounting naturally differ considerably two models are being nade available.
\dagger L. 605. Inverted "V" type dipole television aerial. Attic model with hanging bracket.
£2 12s. 6d.
\dagger L. 606. Inverted " V " type dipole
television aerial. Outdoor model complete with gft pole and requisite chimney lashing brackets. £4 19s. Od.

British Industries Fair

We will be exhibiting in the Hall of Radio and Music (Empire Hall Olympia) Stand No. C 1540.
It will be our aim to have a responsible engineer on the stand at all times and to be able to answer any reasonable, appropriate questions which visitors may wish to ask. Please do come and meet us.
We will show a full range of our pro-ducts-Aerials- Plugs and Sockets, Terminals, Fuses and Fuseholderss Thernal Delay Switches, Valvelolder, and H.F. Interference Suppressors.
We hope to have some interesting practical demonstrations, e.g., to show the application of thernal delay switches to electric motors, etc.

Well, maybe we could adopt that policy of slapping Transformers together and churning them out as fast as possible irrespective of quality - you know, bash the next $X x y$ chap for all he is worth, let the future take care of 1 tself.

LDNOUN GENTRAL Radio stolite

EXRA ${ }^{1}$-NEW PURCHASE-
EX-R.A.F. R1155 COMMUNICATION RECEIVERS

These aets are equal to new need only a power pack fur immediate use (gee "W.W.,' July, 1946), Freq, range, 7.5 mes. or $1,500 \mathrm{kcs}$, complete with 10 valves, including magic eye. Enclosed in atrong metal box. Each receiver Is $\& 17.10 .0$ cirriage and pacl D
o C.O.1).

POWER PACK 220-250 v, AC for above is available to CALLERS ONLY.

BARGAIN OFFERIN P.M. SPEAKERS

5 in . Cone. lees transtumer, New
19/6

12 in . Goosman's $15-01 \mathrm{~m}$ Voice Coil, less tratisurnar. £6 5s. Od., plomentr

HEAVY DUTY HORN-TYPE

 PROJECTION MOVING COIL
LOUDSPEAKER UNITS

Will handle 1 - 12 wate. Ex-Aumiratty ty ne. 15 -obun voice coll. Permanent magnet. New
conditlon. $\mathbf{~ 3 . 1 7 . 6 ~}$ conditlon
 UNISELECTOR SWITCHES
2. or 3-bank, 22 carious upplications various application incluaing intu-
matic tuning. eircuil selection, etc. Operatescn $25 / 50 \mathrm{r}$
$22 / 6$
5/-

EX-R.A.F. AIRBORNE G.P. TRANSMITTERS Type $1 / 54$ Complate with 4 valyes. Frequency coverage; 500 $\mathrm{kc} / \mathrm{s}, 200 \mathrm{kc} / \mathrm{m}, 10 \mathrm{mc} / \mathrm{s}, 3 \mathrm{mc} / \mathrm{s}, 2.35 \mathrm{mc} / \mathrm{s}, 8 \mathrm{mc} / \mathrm{s}$, $3.5 \mathrm{me} / \mathrm{s}$ Poyer Inpar i, rn metai cabinet Supplied in strunty woud case, In metai cabinet. Supplied in strong woud case easily adapted axnateur use. Less $\mathbf{£ 7 . 0 . 0}$ Power lack
Withont Valves and Meters. $30 /-$
Curriage and packing, $7 / f$ extra.

ELEGTRO-MAGNETIC COUNTERS

Eix-di.P.U., every one perfect, electre-Lagnetic 300 ohm coil, counting to 4,999 , operated from

- ... AN INVITATION
We have a new selection of EX-ARMY R.A.F. and ADMIRALTY Receivers and Radar Equlpment in stock, too numerous to advertise. Pay us a call. It witl pay you!

Closed Thursdays 1 p.m. Open all day Saturday.
23, LISLE ST. (6ER 2969) LONDON, W.C. 2

COMPONENT DESIGN TRENDS

Tendencies Revealed at the

R.C.M.F. Exhibition

A^{T}T last year's private exhibition of the Radio Component Manufacturers we saw the first results of the industry's post-war effort to beat its swords into ploughshares. The 1947 show, held in March, marked the culmination of a year of consolidation in the face of heavy handicaps due to shortages of materials.
In last month's Wireless World we gave a list of exhibitors and a classified list of products. In the following pages we review the general trend of design.

Resistors-Fixed. - The applications for a resistor of one million megohms must surely be few, but it is a distinct achievement that such astronomical values can be attained in a component of reasonable size. Such resistors described as Pyromatic, are made by Welwyn Electrical Laboratories in three types for operating volvages of 550 to r, roo. This firm has also produced a new range of wirewound precision resistors on ceramic formers impregnated and coated with a glass fibre compound. Resistance values range from 100 ohms to 10 megohms and an accuracy of 0.5 per cent can be achieved if required. Otherwise the tolerance is one per cent.

There was a new range of highpower carbon resistors shown by Morgan Crucible which are suitable for the termination of rhombic aerials and as artificial aerial loads for high-frequency and V.H.F. transmitters. They have been succesfully used in this manner up to $300 \mathrm{Mc} / \mathrm{s}$, though this is not necessarily their limit of effectiveness. Described as Grade 7 resistors, they can be operated at temperatures up to $200^{\circ} \mathrm{C}$ and single tubular units are available which will safely dissipate as much as go watts on continnous load and several kilowatts on short duration surges.

Resistors-Variable. - Gne of the principal developments over
the past few years has been the wider use of hard, heat-resisting enamels as a coating for wirewound resistors in order to raise the loading, which in effect is another form of miniaturization. Last year saw the introduction of a number of semi-variable resistors of this pattern while this year rheostats and potentiometers have made their appearance.

These have been developed by the British Electrical Resistance Co. from their "T" pattern toroidal-wound power potentiometers by encasing the resistance element in vitreous enamel. All but the actual track over which

Berco $\mathrm{T}_{25} \mathrm{E}$ vitreous enamelled 50-watt potentiometer.
the contact arm rides is completely encased in the enamel and this has resulted in doubling the permissible loading of the unit. For example, a T25E (the E denoting enamelled type) will handle 50 watts, but is the same size as the open 25 -watt model

Those firms whose production is largely devoted to items of a specialized nature were showing some interesting devices for control of volume and mixing of signals from various sources, such as would be required at the control centre of a broadcasting organization, or relay service. A novel form of fader was shown by Painton in which the contact arm moves through an arc of about 60° in a vertical plane. The pivot is at the apex of the wedgeshaped frame and when several units are assembled side by side it is possible to operate two controls simultaneously with each hand, a
convenience when immediate muting of several input circuits is needed.

A similar class of component, but designed for high-frequency applications is the Type A38 attenuator made by Advance Components. It is a four-step unit assembled in a massive diecast case with separate compartments for each resistor and it provides 20 db attenuation per step. There is one spare switch position which could be used for a further stage of attenuation. It has an impedance of 75 ohms and an accuracy of $\pm 2 \mathrm{db}$ at $300 \mathrm{Mc} / \mathrm{s}$ is attained.

The ubiquitous volume control potentiometer was well represented but there was no evidence of any notable changes in design. Ganged units with a common spindle as well as two-unit assemblies fitted with concentric spindles for independent control were more numerous than hitherto, and many specimens of the latter pattern were shown by Colvern, Reliance Manufacturing, Morgan Crucible and British Electric Resistance.

Miniaturization has also been applied to this type of component, some were seen measuring approximately $\frac{3}{4}$ in only in diameter in both wire-wound and carbon varieties.
Some very small sliding type variable wire-wound resistors in fully variable and pre-set styles have been developed by Colvern and these should find many applications in miniature equipments,

Miniature pre-set resistor made by Colvern.
such as hearing aids and personal portables. They are just under zin long and $\frac{8}{8}$ in wide and are available in resistance values from 5 to 750 ohms with a rating of $\frac{1}{2}$ watt.

An inexpensive type of ron-

Component Design Trends-

stant-impedance volume control for extension loudspeakers, was shown by British N.S.F. It consists of seven small resistors assembled on a wafer-pattern switch and is suitable for use with loudspeakers of from 2 to 4 ohms impedance.

Capacitors - Fixed. - Whilst few new designs of fixed capacitors have been introduced this year a number of new models have been added to existing ranges to meet current demands, especially in the miniature class. For example, Dubilier Drilitics now include a $25-\mu \mathrm{F}$, 50 -volt model and two have been added to the 500 -volt units, one is a $4-\mu \mathrm{F}$ size and the other is of $32 \mu \mathrm{~F}$. There are also additions to the Nitrogol range of special television capacitors in both the rectangular and tubular styles.

As a result of manufacturing changes the T.C.C. range of tiny Picopack electrolytics has been extended and now includes capacitors up to $30 \mu \mathrm{~F}$ at 50 volts working. This style is enclosed in an aluminium case measuring $1 \frac{9}{18}$ in long by $\frac{1}{3}$ in diameter.

Further types of special R.F. by-pass condensers for use on veryhigh frequencies, where even a short connecting lead can intro-

Erie "Stand-off '" and "Feed-thru" ceramic capacitors.
duce undesirable inductance, were seen on the Erie stand. Described as "Feed-thru" and "Stand-off" capacitors, according to the style of construction, they have ceramic insulation and one plate of the capacitor is integral with the chassis fixing bush or eyelet, as the case may be. In the "Feed thru" style capacitances from 500 to $\mathbf{1}, 000 \mathrm{pF}$ are available, while in the "Stand off" pattern the range extends from 150 to $\mathrm{I}, 000 \mathrm{pF}$. Further examples of this pattern, although constructional details differ, are included in the products of Dubilier and T.C.C.

Capaciturs - Variable. - This year the demand for miniature gang-tuning condensers has resulted in some wartime designs being modified for peace-time production. Wingrove and Rogers were showing a two-gang

model measuring under ain long, excluding the spindle, and approximately $\mathrm{I} \frac{1}{2}$ in wide. Capacitance variation is 362 pF , with vane spacing of ooogin. There were some further examples of this miniature style in two- and three-gang patterns included in the Plessey range of condensers.

The ordinary variable gang condenser for use in domestic broadcast sets has undergone very little change, except, perhaps, that the number of patterns are now fewer to facilitate production. But most makers can supply quite a wide range of capacitances in the limited designs now available as the same frame is used wherever possible and the spacing between vanes is adjusted to suit the capacitances required.
Miniature air-dielectric trimmers were more in evidence than hitherto and designers of V.H.F. and television equipment have a very wide choice not only in size and in capacitance, but also in make. They were shown by Wingrove and Rogers, Jackson, Plessey, S. Bird, Stratton, Mullard, Walter Instruments and Welwyn Electrical Laboratories, the last mentioned make being no larger than a finger nail, yet it provided the useful maximum capacitance of 32 pF .
Specialist requirements are still well catered for by S. Bird, who also continue their range of transmitting capacitors in single and split-stator types. Many of these are suitable for high-voltage and high-power operation in industrial radio heating apparatus.

Variable capacitors for the amateur transmitter were included also in the exhibits of Labgear, this firm using Mycalex for insulating the stator sections.

Plugs and Sockets.-Flat pin plugs and sockets, similar in general design to the American Jones pattern used extensively in certain wartime radio equipments, are now being made by Painton. These are the small type rated at 5 amps per contact and they are available with from 2 to 33 pins. Contacts are made of beryllium copper with the resilience incorporated in the socket portion, the design being such that neither floating pins nor sockets are required. Complete protection of live parts is afforded when plug and socket are fully engaged and a cable grip is included to relieve individual wires of strain.

The flat pin type of construction is not entirely new to this country as A. F. Bulgin and Co. have been making this variety for a number of years in a limited range for headphone and loudspeaker extension points so as to prevent confusion with electric supply entries.
Several new models have been added to the Belling-Lee range of television and car radio co-axial plugs and sockets. Polythene insulation is used and the capacitance of the assembly is approximately 3 pF . They accommodate cables of from $\frac{1}{8}$ in to $\frac{1}{4}$ in diameter over the shield and a design of shield grip is used that obviates the need for soldering.

The styles available include straight-through chassis mounting and cable-extension types as well

Belling-Lee co-axial plugs and sockets.
as right-angled patterns with either single or double entries on the one unit.

Coils.-Signal-frequency tuning coils are still produced in two
main types: air-cored and dustiron cored. The former are usually wound on a bakelized-paper tube and are designed for use with a variable capacitor of 460 pF or so. In the superheterodyne types an intermediate frequency of around $460 \mathrm{kc} / \mathrm{s}$ is catered for. The coils are in sizes to give coverage from $150 \mathrm{kc} / \mathrm{s}$ to $25 \mathrm{Mc} / \mathrm{s}$.
In one make, the Weyrad, twoand three-band coil assembles are also listed. These have the windings on a common former and cover the medium and long wavebands, and in the three-band type, $6-15.7 \mathrm{Mc} / \mathrm{s}$ as well.

Eddystone $450-\mathrm{kc} / \mathrm{s}$ I.F. transformer.

The air-core coils usually have a diameter of the order of $\frac{7}{8}$ in and are some $1 \frac{1}{2}-2 \frac{1}{2}$ in in length. The iron-core types are smaller and tend to be around $\frac{5}{8}$ in diameter and x in long. Moreover, they have the great advantage of being adjustable for inductance.

Coil packs, comprising the signal and oscillator coils of a superheterodyne together with waveband switches and trimming capacitors wired ready for connection to the valve and tuning capacitor are made by a number of firms. Wearite have two threeband models providing either medium, long, and short waves, or medium- and two short-wave bands.
I.F. transformers for broadcast receivers are often made for permeability tuning. The physical dimensions of some types are remarkably small; thus, the Wearite $M_{4} 00$ measures $13 / 16 \mathrm{in}$ square by I - 3 / 16 in high and the coils have a Q of $\mathbf{1 2 0}$. Trans-
formers of this size for frequencies of $\mathrm{I} .6,2 . \mathrm{I}$ and $4.86 \mathrm{Mc} / \mathrm{s}$ are also available. The Stratton model has the connections made through metallized-ceramic seals, and after adjustment in the set the complete transformer can be sealed by filling the adjustment holes with wax.

Valveholders.-A useful panel mounting octal valveholder, very suitable for experimental " breadboard" layouts, was noted on the stand of McMurdo Instrument Co. This firm is now handling valveholders made under "Amphenol" licence.

Loudspeakers.-There are welcome signs that loudspeaker makers have found time during the year to break away from the task of meeting the insatiable demand for small broadcast receiver types to produce a few highquality models, a notable example being the Vitavox " Bitone" consisting of a multi-cellular horn type H.F. unit in conjunction with a low-frequency cone mounted in a vented cabinet.

The Tannoy ULS/ 15 with 15 in diaphragm is now available with either a copper voice coil for general-purpose work giving uniform response up to $6,000 \mathrm{c} / \mathrm{s}$ and above that a drop of 6 db per octave, or with an aluminium voice coil unit giving a response up to $12,000 \mathrm{c} / \mathrm{s}$.

Goodmans have re - introduced a doublecone high-fidel-

Goodmans heavyduty 18 -in loudspeaker.

ity unit. This is the $T_{2} / 1206 / 15$ with a power handling capacity of

15 watts. Another notable unit shown by this firm was the Tir/i80i/6 " extreme heavy duty" permanent magnet loudspeaker with 18 in diaphragm having a power hand-
 ling capacity of 50 watts.

A multi-unit reflexed horn projector by Reslo is rated for a peak outputof 90 watts and a sustained rating of 60 watts.

Electro Acoustic Industries loudspeaker for television receivers.

Electro Acoustic Industries are producing, in addition to the high-efficiency 5 in unit for all-dry portables, a new 8 in unit for television receivers. This is fitted with a specially designed magnet system with a very reduced external field-an important point where the loudspeaker must be mounted near the cathode-ray tube and might distort the picture. The outer shell of the magnet forming the return path is of soft magnetic material having a much higher permeability than the centre permanent magnet which it encloses.

The new range of loudspeaker units shown by Teledictor are interesting. They make use of speech-coil windings in which one layer is wound inside and the other outside the cylindrical paper former.

Cables and Wires. - A wide variety of R.F. cables, usually with polyethylene dielectric, was shown and they have considerable application in television. There are three main types, coaxial, twin-wire unscreened and twinwire screened. The impedance is usually about 70 ohms, but coaxial types down to 50 ohms and twin-wire up to 160 ohms are available.
T.C. and M. Co. have a special anti-microphonic coaxial cable in which there is a low-resistance covering adhering to the cable core immediately below the braiding and it is claimed that the noise

Component Design Trends-

 produced by flexing and impact is reduced by as much as 50 db . This firm is also producing a coaxial cable with a double outer metal-braided sheath which is claimed to increase the screening by $6-30 \mathrm{db}$ according to frequency.Connecting wires, both flexible and non-flexible, are made with P.V.C. insulation in a wide variety of bright colours. The older form of insulation for internal connec-tions-sleeving-is still produced, however. P.V.C. is common here also, but the varnished-fabric sleevings are well to the fore and made by a large number of firms.

Aerial Equipment. - Television aerials have been tidied up in appearance during the year; the Aerialite type DLB, for instance, is now fitted with an attractive moulded insulating shroud at the centre.

Belling and Lee were showing a new inverted " V " dipole television aerial suitable for suspension from the ridge inside the roof of a house. It is stated that the aerial is inherently directional with a high maximum / minimum ratio and may be used to discriminate against "ghosts." It is suitable only for high field strengths, say up to a range of 5 miles for indoor and ro miles for outdoor use with the

Aerialite type DLB te'evision aerial.
present power output from Alexandra Palace.

Telescopic aerial rods suitable for fixing to the sills or window frames of flats or houses, where the erection of a conventional aerial presents difficulties, have been introduced by a number of firms. Examples noted were the Antiference "Silmount" and the Aerialite "Aerınax," with adjustable inounting bases.

Transformers and Chokes.-The established methods of trans
former design and production continue to serve the needs of the in-
A.B. Metal Products D.P.D.T. switch.

dustry and few innovations were to be found among the products of the firms specializing in these important basic components.

A new range of hermetically - sealed transformers in cylindrical cans with glass seals are made by Parmeko. These transformers have a circuit and essential characteristics printed on the

Partridge twin output transformer unit.
can and present an atiractive appearance.

Partridge Transformers were show-
ing a high-quality output transformer with less than 0.5% distortion at $30 \mathrm{c} / \mathrm{s}$ at a load of 12 watts; also, a twin transformer output unit providing a cross-over

Parmeko hermetically sealed transformer.
network for high- and low-frequency loudspeakers.

Switches. - The well-known rotary wafer-type switches are almost universally used for waveband switching and changes of design are in matters of detail only. The insulant is usually a bakelized-laminated material but small-sized types with ceramic insulation are now made. The principle of this switch has been applied to other modes of operation and lever patterns with the same kind of contact element are now made. A double-pole changeover switch consists of a halfwafer mounted edge-on to the panel with a lever arm, which can be spring-loaded if required.

The Oak range of switches has been supplemented by sliding types which are advantageous in economizing space in some layouts. Push-button switches are made with almost an infinite variety of contact arrangements.

For instrument work, such as high-grade attenuators, the wellestablished rotary steel switches are retained and improvements lie in matters of detail such as the contact materials and the fixing of the contact studs.

Metal Rectifiers.-In the Sentercel series of selenium rectifiers made by Standard Telephones is an entirely new range of Uniplate rectifiers for use as half-wave, voltage doublers or bridge-connected units. Four plate sizes are now available (types $\mathrm{H}_{5}, \mathrm{H} 6$, H_{7} and H_{9}) and these carry maximum mean forward currents of 1 , 2.5 .13 and 40 mA respectively.

Four H6 plates assembled in bridge connection forms a most
compact instrument rectifier for a $0-5 \mathrm{~mA}$ meter as it measures only $\frac{1}{2} \operatorname{in} \times \frac{1}{\operatorname{lin}} \times \frac{3}{16} \mathrm{in}$. This assembly is described as the B6 rectifier. A B9 model containing four H_{9} plates, will pass 75 mA . The maximum reverse voltage these recti-

Bridge connected instrument rectifier Type B5 using S.T.C. Sentercels.
fiers will withstand is 18 volts R.M.S. per unit.

There is also a range of lowcurrent high-voltage Sentercel rectifiers some of which are well suited for use in television receivers, while others should find many applications in cathode-ray oscilloscopes and kindred apparatus. Described as the Types 4 and Io tubular rectifiers, output voltages up to 2 kV are available from a single unit, the former gives 3 mA output and the latter 10 mA with a capacitative load.

Some new high-voltage lowcurrent models were include.l in the range of selenium rectifiers made by Westinghouse. One of the latest pattern for C.R.T. and television use is the Type $16 \mathrm{H}_{23} 6$ measuring about 12 in long and $\frac{1}{2}$ in diameter. It is a half-wave rectifier giving a D.C. output of 3.730 volts and 8 mA when using a $0.2 \mu \mathrm{~F}$ reservoir condenser.

Westinghouse highvoltage rectifier Type 16 H 236 and low current model Type 16 K 9 .

Higher output voltages can be obtained by series connecting several of these units but in general two in series, or as a voltage doubler, will satisty most television requirements.

A miniature half-wave rectifier which should have a number of applications in small test sets
operated from A.C. supplies is the Westinghouse type 16 K 9 . It ineasures $\frac{7}{3}$ in long and $\frac{1}{2}$ in diameter and gives a D.C. output of 137 volts at 8 mA with a $4 \mu \mathrm{~F}$ reservoir condenser.

Materials.-Apart from those used in cables and wires, insulating materials in wide use fall into two main categories: ceramic and bakelized - laminated material. The latter is very widely used for switch wafers, valveholders, terminal strips and similar items, while ceramics are more commonly used for insulation in variable capacitors and coil formers. They are, however, also adopted in some cases for valveholders and switches

Mouldings, while still far from uncommon, appear to be less frequently used for insulation purposes than for what may conveniently be termed external parts. By these are meant such things as control knobs, plug-and-socket covers, and whole cabinets. Here the products are characterized by an extremely clean finish and bright colours.

Metal-ceramic and metal-glass seals are becoming more widely used on apparatus for tropical use, and there is a tendency to adopt multi-lead seals in preference to using a number of single seals. Six-way metal-glass seal units-in appearance very like a ring-seal valve base-are being used for A.F. transformers among other things.
A wide range of flexible insulating sheet material is now available ranging from the well-known varnished fabrics, such as Empire cloth, to polyethylene.

Magnetic core materials for transformers, chokes, and motors were shown by Magnetic and Electrical Alloys, Geo. L. Scott, and T.C. and M. Co.

Mumetal screens in the form of boxes for screening small components and as cathode-ray tube shields were on view.

Radio-Communication Convention

List of Main Papers (See p. 158)
Telecommunications in War, Colonel Sir Stanley Angwin.
Long-Distance Point-to-Point Communication, A. H. Mumford.
Low., Medium- and High-Frequency Communication to and from H.M. Ships, E. J. Grainger and W. P. Anderson.
Military Radio Communications, Brigadier J. B. Hickman.
Aeronautical Communications, B. G. Gates.
Pulse Communication, D. Cooke, A. J. Oxford, Z. Jalonek and E. Fitch.
Ultra-High-Frequency Technique Applied to Mobile and Fixed Services, J. Thomson, J. D. Denly, I. J. Richmond, F. Pugliese and H. Borg.
Résumé of V.H.F. Point-to-Point Communication, C. W. Sowton and F . Hollinghurst.
Naval Radio Direction-Finding, C. Crampton.
Fundamental Problems in Radio Direction-Finding at High Frequencies ($3-30 \mathrm{Mc} / \mathrm{s}$), W. Ross.
Wartime Activities of the Engineering Division of the B.B.C., H. Bishop.
The Investigation and Forecasting of Ionospheric Conditions, Sir Edward Appleton.
The Influence of Propagation on the Planning of Short-Wave Communications, K. W. Tremellen and I. W. Cox.
Manufacturing Aspect of Component Developments, E. M. Lee.
Component Development for Wartime Service Applications, I. M. Ross.
Reyiew of the Convention and Future Trends, Sir Clifford Paterson.
The Development of C.W. Radio Navigation Aids, with particular Reference to Long-Range Operation, R. V. Whelpton and P. G. Redgement.
A Survey of Continuous-Wave Short. Distance Navigation and Landing Aids for Aircraft, Caradoc Williams.

New Ekco Console

PUSH button tuning for five stations and provision for reception of television sound are features of the new Model C36 console produced by E. K. Cole, Southend-on-Sea. The 4 -valve plus rectifier circuit covers the usual short, medium and long wavebands and includes a 4 -position tone control The output pentode operates with negative feedback and delivers 2 watts. The price is $£ 3 \mathrm{I}$ ros plus $£ 6$ I5s 6 d purchase tax.

Designing an F.M. Receiver

The concluding instalment of this article is unavoidably held over until our next issue. In Fig. 3 of Part 1 it is regretted that coupling condensers between anode and grid circuits were inadvertently omitted; a convenient value for these would be o.omi $\mu \mathrm{F}$.

RANDOM RADIATIONS

By "DIALLIST"

The Way of the Translator

ONE is liable to get a variety of shocks (and not a little amusement at times) from reading a translation into a foreign language of something that one has written Certainly I got both when I opened at random the French version of a little thing of my own and saw in the very first sentence that my eyes lit upon the remarkable expression "Si, vous chronométrez un programme de télévision..." Can you guess what it was meant to represent? The translator had apparently looked up "watch" in his dictionary and found chronométre. Since "watch" was obviously a verb in the text, he gaily coined a French verb as its equivalent! The real gem is his translation of "American cloth," which becomes toile grossière telle que celles dont sont faits les vêtements annericains. I could forgive him such Iittle fantasies had he stuck to that kind of thing; but it ceases to be funny when a translator renders "repelled" by attiré, "it is not correct" by il est exact and makes the nost frightful iness imaginable of converting yards, feet and inches into metric units. Ah me!

B.B.C. Recordings

R^{E}ECENTLY I spent a most interesting afternoon going round the B.B.C.'s recording department. It's a rather remarkable show; the whole of the disc-recording apparatus is of their own design and I should doubt whether there is anything to compare with it anywhere else. They have even their own stylus-making department, where the sapphire tips that are used are ground, polished and shaped with minute accuracy to a carefully worked out design. After seeing and hearing what I did I'm quite satisfied that the B.B.C.'s own disc recordings are about as good as such recordings can be; but I still make these contentions:
(1) No disc recording can ever be quite so good as an original broadcast.
(2) Though recordings must be used for repeat performances in both home and overseas programmes, there is no excuse for employing them in the home broadcasts for such features as "American Commentary.'
(3) Far too many of the "pressed" records-discs, that is, bought from manufacturing con-
cerns-in the B.B.C.'s "liurary" are badly worn, scratched or wobbly. "These records are largely used as "fill-ups" between items. The record library is much in need of a thorough overhaul, which would ensure that faulty records were with drawn from service.

Fidelity

One of my contentions (that no disc recording can be as good as the original) is borne out by a test which can be made on the B.B.C.'s own apparatus. In one stuclio there are twin recording instruments which are normally used, so to speak, in series: that is, instrument \mathbf{B} comes into action when instrument A has filled its disc. But the existing switching arrangements make it possible to "tap" the record made by either instrument and to use the other to make what we may call a second-hand recording-a recording from the first record. When B has made a "second-hand" record from A, A can make a "third-hand" one from B and so ad infinitum. It is found that the second-hand copy is more or less acceptable; many people don't find much wrong even with the next. But when it comes to the fourth-hand or fifth-hand copies there are few who don't disapprove heartily. Something, in fact, is lost at each stage from the first onwards: in other words, there is no such thing as a completely faithful disc recording. One of the worst drawbacks of this kind of recording is scratch. Gramophone addicts apparently get used to it and cease to notice it; but I never do and the worst of it is that the better the response of your wireless set the more annoying is the neeedle scratch. Unfortunately, it is just random noise and you can't really do much about it by filtering. The only palliative is to cut a whole chunk of high audio frequencies and lose a good deal of "top" in getting rid of a little of the scratch.

Bound to Come

It was a revelation in the reproduction of recorded sounds to hear at the B.B.C.'s Maida Vale studios the latest model of the German Magnetophon using the latest type of coated plastic tape. This kind of tape is inherently pretty free from noise and the particles of iron in the coating get such a shaking up in the H.F. field through which they pass before reaching the recording head that they are com-
pletely demagnetized and purged of all possible sources of noise before they are called upon to receive the magnetizing impulses due to the sounds that are being recorded. The effect of the H.F. field practically amounts to putting each individual particle through its entire hysteresis curve in a fraction of a micro-wink! This kind of recording and reproduction, when at its best, is better than anything that can be done with disc and needle. In my humble opinion it is bound to supersede them for broadcasting purposes. The coming of F.M. broadcasting, with its high fidelity and its reduced contrastcompression, will undoubtedly intensify the need for better recording methods than those now in use and I believe that the answer to the problen will be found in developments along the lines of the Magnetophon. All that, however, will take some time. Meanwhile, the B.B.C. undoubtedly possesses a live, able and enthusiastic recording department and the records that they make themselves are prohably the best of their kind in the world. If they will weed out their worn and damaged "fill-ups" and will use recordings only when they must be used, I think they'll come in for far less adverse criticism.

MANUFACTURERS' LITERATURE

LEAFLET describing the "Telemaster" inter-departmental communication system, and advance specifications of B.S.R. direct disc recording equipment from Birmingham Sound Reproducers, Claremont Street, Old Hill, Staffs.

Details of "Midgetron" values for hearing aids, cold cathode three-electrode valve, type ZO, and leaflet describing miniature earpieces from Park Royal Scientific Instruments, 52, Minerva Road, London, N.W.ıo.

Technical data on " Nilo-k" " glass-tometal sealing alloy from Henry Wiggin and Co., Wiggirs Street, Birmingham, 16.

Catalogue of "Voltac" insulating varnishes and compounds, with full details of physical properties, methods of control in use, etc., from the Indestructible Paint Co., 6, Chesterfield Gardens, Curzon Street, London, W.i.
Illustrated leaflets describing 'Midget" and "Easidun" electroplating plants from Runbaken Electrical Products, 71-73a, Oxford Road, Manchester, r.
Leaflet describing the Burgoyne coaxial aerial connector, from M.O.S., 24, New Road, London, E.i.
'Electrons at War,' an outline of the technical achievements of the Valve Division of Standard Telephones and Cables, 63, Aldwych, London, W.C.2.

THE MORGAN CRUCIBLE COMPANY, LIMITED, LONDON, S.W. 11

For all installations, including PUBLIC ADDRESS, either indoors or out TRANSFORMERS

roupon

NAME
ADDRESS
Please send the leaflets marked ":omerford" Output Transformer "Somerford '" Auto Transformer Somerford " Mains Transformer Somerford" Smoothing Chokes "Somerford" Driver Transformer "Somerford" E.H.T. Transformer

FOR RADIO

INDUSTRY
IABORATORY

PREMIER RADIO

(MORRIS AND CO. (RADIO) LTD.)
ALL POST ORDERS TO: JUBILEE WORKS, 167, LOWER
CLAPTON ROAD, LONDON, E.5. (Amherst 4723)
CALLER8 TO: 169, FLEET 8TREET, E.C.4. (Central 2833)
LIST AVAILABLE, HUNDREOS OF NEW LINES.
TERMS OF BUSINESS: Cash with order or C.O.D. over $f 1$
All enquiries must be accompanied by a $2 \frac{1}{2} \mathrm{~d}$. stamp.
RADIOGRAM CABINETS

Dignified appearance and good workmanship Size, $34 \frac{1}{2} \mathrm{in}$. high, 19 in . deep, 36 in . wide. Cabinet only $£ 26$, with motor and pick-up, £ 32165.

MIDGET RADIO KIT. Build your own Midget Radio. A complete set of parts, including valves, loudspeaker and instructions. In fact, everything except cabinet necessary to build 4 -valve Medium and Long Wave T.R.F. Radio operating on $200-250 v$. Mains, A/C or D/C. Valve line-up, $6 \mathrm{~K} 7,617,25 \mathrm{A6}, 25 \mathrm{Y} 5$. Wave-lengths covered $200-557$ and $700-2,000$. Size $10 \times 6 \times 6 \mathrm{in}$. Completely drilled chassis. Price, including tax, $£ 77 \mathrm{~s}$. 6 d .
An attractive bakelite cabinet can be supplied at $25 /-$-extra or_wired and tested in cabinet. Price $£ 10$ 19s. 6 d .
SUPERHET MIDGET RADIO KIT. A complete kit of parts for a 5 -valve superhet. Covers 16.50 and $200-557$ metres. AC/DC 200-250 v. $6 K 8,6 K 7,617,25 A 6,25 Y 5$. Size : $10 \times 6 \times 6 \mathrm{in}$. Completely drilled Chassis. Price, including tax, $£ 85 \mathrm{~s}$.
An attractive bakelite cabinet can be supplied at $25 /$ extra.
1947 MODEL COLLARO MICROGRAM. A super quality $3 \frac{1}{2}$-watt amplifier contained in a neat leatherette-covered portable carrying case, with a quality Electric Motor, Pick-up and Loudspeaker incorporated, Just the thing for quality record reproduction. Price,
620 10s. 8d
FIVE 5-VALVE SUPERHET RADIO. Employ CCH35, EF39, EBC33, CL33, CY31 valves; operate on $100-250$ volts AC/DC mains Cover 13-40, 40-100, 200-550 meters. Gram position on wavechange switch. EXT L/S terminals, 8 -inch energised Speaker; dial aperture $12 \times 4 i n$. ; enamelled steel cabinet, 18 in . high $\times 15 \mathrm{in}$. wide $\times 9$ in. deep. Manufactured by Portogram Ltd., for Navy Welfare Centres. A fortunate purchase enables us to offer these fine sets at $£ 15$ I5s., including Purchase Tax. Packing and carriage $10 /$ - extra. Strongly recommended as a Radiogram Chassis in conjunction with Cabinet, illustrated above. COLLARO PORTABLE RECORD PLAYERS. Consist of a super quality induction type gramophone motor $200-250 \mathrm{~V}$. A/C with autostop and high-grade magnetic pick-up. Mounted in a leatherette carrying case. Price $\mathbf{f l l} 5$ s. A few only. Delivery from stock.
MANSBRIDGE TYPE CONDENSERS. Huge purchase Military Surplus Paper Condensers. Super quality, oil filled.

TYPE 103. Rotary Transformer. Normal rating is $19 \mathrm{v}, \mathrm{D} / \mathrm{C}$ input. Output 300 volts $30 \mathrm{~m} / \mathrm{a}$ and 6.5 volts 3 a . D/C. By applying between 200 and 250 volt D/C to the H.T. output side, the two low-tension windings may be used to charge accumulators. The 19 -volt side will charge a 6 -volt accumulator at $2-3 \mathrm{amps}$, the 6.5 side a 2 -volt accumulator at $1-2 \mathrm{a}$. with a 12 -volt input to the 19 -voit side, 180 v . at $30 \mathrm{~m} / \mathrm{a}$ and 4 v. at 3 a. may be obtained. With a 6 -volt input to the 6.5 side, 160 v . at $30 \mathrm{~m} / \mathrm{a}$ may be obtained. By extending the spindle which is flush with the frame and applying 200 to 250 v . D/C mains to the 300 v . side, the unit becomes a powerful high-speed electric motor, suitable for small drilling machines, etc. Similarly, it may be used with 6 or 12 v . input to the 6.5 v . or 19 v , side. it employs a powerful ring magnet and is of substantial construction costing originally over 15. A fortunate purchase enables us to offer these fine units at $10 /$. All goods advertised in April issue are still available.

PRE-EMPHASIS AND DE-EMPHASIS
 the valve; a condition that is

Why Measured in Microseconds?

By "CATHODE RAY"

THE difference between what is called " ligh-fidelity" reproduction and the ordinary sort is the upper-frequency limit. If the latter stops at $3000-4000 \mathrm{c} / \mathrm{s}$, "high-fidelity" goes up to perhaps 6000 or $8000 \mathrm{c} / \mathrm{s}$. Never mind the exact figures; that is the general idea. For various reasons, however, the effort put into achieving "high-fidelity" is not always rewarded with the expected number of phons of acclamation. One of those reasons often is that opening the frequency gate wider to let in the harmonic fairies, that tell us the difference between a violin and a flute, also lets in the noise demons that mess up the whole thing. Since the desired high-frequency sounds seldom represent deep transmitter modulation or full recording, it is generally quite safe to puff them up systematically at the sending or recording end, it being understood that they will be reduced back to normal proportions at the hearing end, in which process the noise (which hadn't the benefit of the extra rations) will be reduced below normal proportions. Preemphasis and de-emphasis.

That ought to be clear and understandable enough, but what may be a shade obscure to some readers is the practice of reckoning pre-emphasis and de-emplasis in microseconds (abbreviated μ secs). Obviously it is important that all who make receivers for preemphasized programmes should know how much they have been pre-emphasized, so as to apply an equal and opposite amount of de-emphasis. The simplest way of enlarging or reducing high frequencies in proportion to low is to use an amplifier coupling whose impedance is constant at the low frequencies and rises or falls at the high. Take inductance in series with resistance (Fig. I a). At very low frequencies, the inductance does practically nothing. We have, ị̣i eflect, a
simple resistance coupling, with a level amplitude/frequency characteristic (left-hand end of Fig. rb). At very high frequencies, the inductance does so much that now it is the resistance that can be neglected. We have an inductance coupling, with a rising characteristic (right-hand end of Fig. Ib). At middle frequencies, where neither resistance nor inductance predominates, there is a gradual transition from level to rising characteristic (middle of Fig. I b).

The magnitudes of these effects
Fig. I. (a) Basic preemphasis circuit, with its characteristic curve (b).

are very much simpler to work out if one can assume that the amount of signal current flowing through the coupling is unaffected by the varying impedance of L, at any rate within the range of frequency concerned. For this to be so, the total impedance of L and R must be small compared with that of easiest to fulfil by using a pentode or other type with an r_{a} of the megohm order. If then the coupling is never more than about 100,000 ohms the signal current can be assumed to be unaffected by it, and therefore equal, as near as makes no matter, to the grid signal voltage (call it E_{0}) multiplied by the mutual conductance of the valve, g_{m}. The signal voltage across the coupling is, of course, equal to the impedance, Z, of the coupling, multiplied by the signal current through it. So we have

Input voltage $=\mathrm{E}_{g}$
Output voltage $=\mathbf{E}_{g} g_{m}$ Z
And therefore amplification $=$
$\frac{\mathrm{E}_{g} g_{m} \mathrm{Z}}{\mathrm{E}_{g}}=g_{m} \mathrm{Z}\left(\mathrm{Z}\right.$ assumed $\left.\ll r_{a}\right)$ As we have already agreed, Z at low frequencies can be taken as just R. So R fixes the level of the curve (Fig. $1 b$) at the left-hand end. The rate at which it rises at the right-hand end, where L has become the dominating partner, is beyond our control, because
if R is neglected, $\mathrm{Z}=\mathrm{X}_{\mathrm{L}}$ (the inductive reactance), which is fixed by Nature in the relationship $\mathrm{X}_{\mathrm{L}}=2 \pi f \mathrm{~L}$. In other words, the amplification is proportional to the frequency. So the curve rises twofold for every doubling of frequency; that is, 6 decibels per octave. To get a quicker rate it

Pre-emphasis and De-emphasis-

would be necessary to use more than one stage of pre-emphatic amplification. But 6 db per octave is a standard practice.

Obviously the sloping part of the curve can be moved bodily up or down by increasing or reducing L , which is the only other variable factor. But if R is simultaneously increased or reduced, the shape of the whole characteristic is not altered in the slightest; it is just higher or lower, which indicates higher or lower amplification of the stage, but is quite beside the point so far as pre-emphasis is concerned. Pre-emphasis is amplification of high frequencies relative to the low, so can be calculated as
in series. The time the current would take to reach its final value, if it could continue to rise at its initial rate, equals $\frac{\mathrm{L}}{\mathrm{R}}$ seconds, which is called the time constant.

At the present moment we are not particularly interested in what happens when the D.C. supply is connected in Fig. i a, but we are interested in any convenient figure that will tell us how much it preemphasizes, and at what frequencies. It is clear (I hope) that this already-familiar quantity, the time constant, tells us just that.

For example, in the published results of the B.B.C. frequencymodulation tests, it was men-
$f_{h}=8000 \mathrm{c} / \mathrm{s}$; then the amplification at that freqency, relative to the low frequencies, $\approx 2 \pi \times 8000 \times$ $0.00005=2.5=8 \mathrm{db}$.

The approximate sign (\approx) in the formula just used above is a remincler that in calculating the amplification at high frequencies we were neglecting R altogether. That is only allowable well to the right in Fig. 1 b, and fails over the important middle stretch. So here, as a matter of interest, is the more accurate and generally applicable formula, subject only to error due to the coupling impedance Z being assumed negligible compared with r_{a} :

Pre-emphasis at frequency f_{h}
$=\sqrt{1+\left(2 \pi f_{h} \frac{\mathrm{~L}}{\mathrm{R}}\right)^{2}}$
Fig. 2 shows a characteristic curve for $\frac{\mathrm{L}}{\mathrm{R}}=50 \mu$ secs, by both approximate and correct methods.

The idea of time-constant, although it originally had to do with D.C., is not completely irrelevant to pre-emphasis. It very quickly enables one to sketch the characteristic curve without any formula at all. If the time in " time-constant" is looked on as the time of one cycle of signal, then it gives a frequency, the frequency at which the preemphasis is 6.36 , or 16 db . Try it with $50 \mu \mathrm{sec}$. If each cycte lasts for $50 \mu \mathrm{secs}$, or 0.00005 sec ., the frequency must be $20,000 \mathrm{c} / \mathrm{s}$. So one point on the $50 \mu \mathrm{sec}$. curve is $20,000 \mathrm{c} / \mathrm{s}, 16 \mathrm{db}$. An additional point is given by dividing this frequency by 6 (accurately, 2π). That gives the frequency of the middle of the bend, where the pre-emphasis is 2 , or 3 db . Knowing also that the straight of the slope is 6 db per octave, a complete characteristic curve can be sketched in a few moments (Fig. 2).

Remember, however, not to extend the slope so far up that the coupling impedance becomes comparable with the valve impedance, as when that happens the curve starts to flatten out again. This tendency can be postponed by not attempting to amplify much (i.e., by making R quite small) and by using current negative feedback to increase the apparent r_{a} of the valve.

Although few readers will have

Back in basic electrical theoryeffect of switching a D.C. supply to a circuit consisting of L and R
tells us the amount of pre-emphasis at any frequency. For example,

Fig. 2. Characteristic curve for a $50-\mu \mathrm{sec}$ pre-emphasis circuit. It can be quickly sketched by putting in the $16-\mathrm{db}$ point at the frequency equal to $1 /$ time-constant, drawing a slope of 6 db per octave through it, and smoothing it off into the horizontal through the 3 -db point, at the frequency roughly equal to $I /(6 \times$ time-constant $)$.

[^9]a practical interest in pre-emphasis as such, I have gone through it in some detail, because the same principles apply to de-emphasis, which concerns or is soon likely to concern many, and to tone
the receiver is to see that the time-constant of the de-emphasis circuit is likewise.

The time-constant of a CR circuit is just CR. So after having chosen R to give a suitable

FREQUEHCY IN CYCLES PER SECOND
control, which concern's almost everybody at some time or other. Also to unintentional distortion due to stray capacitance across the coupling resistor. And even to standard resistors intended for laboratory measurements over a wide range of frequency.

Substituting C for L in Fig. $1 a$, the reactance rises at the lowfrequency end, giving bass lift. Putting L in parallel instead of in series gives bass loss. What we want for de-emphasis, however -high-note loss-is obtained by 3. C in parallel with R (Fig. ₹a), and the resulting characteristic (Fig. 3b) exactly straightens out Fig. ib. At least, it does so if it begins to bend down at the same frequency as the other bends up. constant must be the sameanother great advantage of the time-constant idea; it obviates calculations. That is just as well, because the fact that the de-emphasis circuit is a parallel one would make it a little more troublesome.

If the standard pre-emphasis is $50 \mu \mathrm{secs}$, all one has to do at
stage gain, one simply divides 50×10^{6} (or whatever the preemphasis time constant is) by R in ohms to get C in farads. Simpler still, divide microseconds by ohms to get microfarads. A convenient feature is that at the receiving end, where one might grudge a stage doing little but de-emphasizing, there is no reason why R should not be made large enough to give a useful gain ; say 50,000 ohms ; because that is the maximum coupling impedance. If RC is $50 \mu \mathrm{secs}$ and R is $50,000 \Omega$, then C is of course $0.001 \mu \mathrm{~F}$. And the de-emphasis curve is just Fig. 2 upside down. To get the curve for any other time-constant, divide the frequency scale readings by the actual time constant relative to $50 \mu \mathrm{sec}$. For example, for $75 \mu \mathrm{secs}$, divide all the frequencies by $1 \frac{1}{2}$.

Pre- and de-emphasis are usually associated with frequency modulation. One reason why it is not much applied to amplitude modulation may be the fear that if by any chance a programme does include strong sounds within the range of boosted frequencies,

THE TRIX ELECTRICAL CO. LTD.
1.S maple piack-tottinmam court road-LOndon, w. 1

Pre-emphasis and De-emphasisthey would over-modulate the transmitter, and the last state would be worse than the first. Also A.M. is thoroughly established on a non-emphasized basis, whereas, F.M. being new, the receivers can be designed to fit pre - emplasized transmissions from the start. Over-modulation with F.M. is not quite so dire at the transmitting end as with A.M.; it means a greater-than-normal frequency deviation. But it is liable to cause distortion at the receiver. It is interesting to note that the B.B.C. recommends $50 \mu \mathrm{secs}$, instead of the American $75 \mu \mathrm{secs}$, on the ground that the advantage in signal-to-noise ratio with the latter was largely neutralized by a necessary reduction in depth of modulation.

A level wide-frequency-range characteristic for gramophone reproduction is unpopular because of the large amount of scratch that it brings in. So pre-emphasis
might seem to be the answer It certainly has been applied in many American records, but is not invariably a success. It is true that by its use scratch can be almost eliminated without making the record sound like the roll of muffled drums, but the heavy high-note recording is more than most pick-ups can stand without much buzzing and rattling. Moreover it makes acoustic gramophones sound shriller than ever.

The time-constant method is useful when considering how to avoid top-note loss. Suppose 3 db loss is judged to be tolerable at $10,000 c / \mathrm{s}$. The corresponding time-constant is the reciprocal
of 2π times that, say $\frac{1}{63,000}$, which is 16μ secs. So if the unavoidable stray capacitance across the coupling resistor is, for instance, 32 pF , the coupling resistance must not exceed $\frac{16}{32}=0.5$ megohm.

SIX-METRE TRANSATLANTIC SIGNALS

 6,000-km Single-hop Transmission?By R. NAISMITH (National Physical Laboratory)

DURING the present maximum in solar activity ionospheric conditions should be favourable for long-distance communication on $50 \mathrm{Mc} / \mathrm{s}$. Therefore, there may be an opportunity to consider the efficiency of very long transmission paths when only one reflection in the ionosphere is involved.

The area of reception of the maximum frequency returned by the ionosphere is distinctly limited and is correspondingly difficult to find. It has already been shown ${ }^{1}$ that if we use the Appleton-Beynon method ${ }^{2}$ for the computation of maximum usable frequencies from measured vertical incidence conditions, accuracies of the order of $\pm 3 \%$ can be achieved. We can apply this method to the ionospheric conditions prevailing at Slough on November 24th, 1946, at 16.00 G.M.T. At that time the vertical incidence critical frequency for region $F 2$ for the ordinary ray was $14.6 \mathrm{Mc} / \mathrm{s}$ (only on one previous occasion had this value been ex-
ceeded). The height of maximum ionization at this time was 310 km and the corresponding maximum frequency for transmission by the tangential ray was $48.9 \mathrm{Mc} / \mathrm{s}$ over a maximum distance of $5,700 \mathrm{~km}$.

It is interesting, therefore, to read that on the same day H. O'Heffernan ${ }^{3}$ was able to receive transmissions from America in Devonshire on $50 \mathrm{Mc} / \mathrm{s}$ (of peak strength R8/9) from 16.17-17.20 G.M.T. In Essex D. Heightman ${ }^{4}$ received the same transmissions slightly weaker until 17.00 G.M.T. It is significant that the signal appeared at the two stations at approximately the same Universal Time whereas it disappeared at about the same local mean time. The distance involved in both cases was of the order of $6,000 \mathrm{~km}$.

The comparison involves the assumption that the ionospheric conditions over Slough were equally favourable in the reflecting region over the Atlantic. This is a reasonable assumption, since the area concerned would be at approximately the same latitude and would be illuminated by the sun at a slightly earlier local mean time.

The high field strength recorded is also of importance since it indicates a high efficiency of transmission.

There are two other modes of propagation which must be considered. In the first a moderate amount of sporadic ionization in region E at 16.00 G.M.T. may have increased momentarily to permit $50-\mathrm{Mc} / \mathrm{s}$ transmission. Alternatively, there may have been an intermediate reflection from the top of region E, making an M-type of path. The sporadic nature of this region E ionization, compared with the long period 16.17-17.20 G.M.T. during which the transmission took place, makes this alternative extremely un likely.

The second alternative would be by two reflections in region F. Owing to the shorter distances involved the maximum frequency which could be sustained would be $43 \mathrm{Mc} / \mathrm{s}$. Since this is 14% below the observed frequency it is extremely unlikely that propagation was effected in this way.

In conclusion, therefore, it appears that this is the first proved case of highly efficient transmission involving only one reflection over a distance of approximately $6,000 \mathrm{~km}$. It is hoped that there will be many more observations of this type on $50 \mathrm{Mc} / \mathrm{s}$ and above from which the accuracy of prediction of maximum usable frequencies may be increased.

References

E. V. Appleton and W. J. G. Beynon; "The Application of Ionospheric Data to RadioCommunication Problems Part I." Proc. Phys. Soc., 1940, 52, 518.
E. V. Appleton and W. J. G. Beynon; " Some Observations of the Maximum Frequency of Radio Communication over Distances of $1,000 \mathrm{~km}$ and $2,500 \mathrm{~km}$." (In course of publication.)
s "Transatlantic 6 Metres." Wireless World, 1947, 53, 18.

- E. P. Tilton; "The World Above 50 Mc." Q.S.T., 1947, 31, 50.

Ekco Car Radio: A Correction

In referring to the Model CR32 on page IIS of the March issue we mentioned "push-button" control for five medium and one long-wave station. Actually the control is by means of a six-position rotary switch.

INTERNATIONAL TELECOMMUNICATIONS

THE Government has accepted the invitation from the United States government to send delegations to the following international conferences to be held at Atlantic City, to which brief reference was made in our March issue.

An International Radio-communication Conference, to open on May 15th, for the purpose of revising the International Radiocommunication Regulations, last revised in 1938, including the allocation of frequencies between the various wireless services.
An International High-Frequency Broad casting Conference, to be held immediately following the above, to secure a better regulation of long-distance broadcasting services.
A Plenipotentiary Conference of the International Telecommunications Union, opening on July 1st, to draw up a new International Telecommunications Convention to replace that signed at Madrid in 1932 , and frame statutes under which the I T.U. will enter into relations with the United Nations Organization.
The delegation will be led by Sir Stanley Angwin, chairman of Cable \& Wireless.

The President and General Secretary of the R.S.G.B are to attend the first conference as representatives of the International Amateur Radio Union

MARINE RADIO AIDS

ANOTHER international conference to which a British delegation is being sent is one on radio aids to marine navigation which opens in New York on April 28 th. It will be recalled that the first of these international meetings on marine radio aids was held in Lon-- don last May.

The British delegation, arranged by the Ministry of Transport, will be led by Sir Robert Watson-Watt and includes W. Ross, the Ministry's newly appointed principal scientific officer on radio navigational aids, Lt. R. B. Michell, of the Admiralty Signal Establishment, H. Stanesby (G.P.O.), Grp. Capt. E Fennessy (Decca), and L. H. J. Phillips (Met-Vick).

NAVAL WIRELESS RESERVE

THE Admiralty has announced the reconstitution of the Royal Naval Volunteer (Wireless) Reserve, which was originally formed in - 1932. At present only officers and men who served in the Navy during the recent war are eligible to join the Reserve which will consist of specialist officers, wireless operators and radio electricians.
Units will be formed in the major towns of Gt. Britain and Northern Ireland. Details of the Reserve can
be obtained from the Admiral Commanding Reserves, Queen Anne's Mansions, London, S. W. 5 .
Wireless World took a leading part in the formation of the pre-war reserve, Enown as the Royal Naval Wireless Auxiliary Reserve, for which Vice-Admiral Dorling, now director of R.I.C., was responsible.

B.B.C. AND F.M.

P^{L} LANS for " some thirty F.M. stations to cover the whole of Britain," have been made by the B.B.C. This announcement was made by Sir Noel Ashbridge, during a recent two-way programme between London and New York broadcast from WGY on the occasion of the 25th anniversary of the opening of the station.
He added, "I believe F.M. will be of even greater importance in this country and in Europe generally than it is in the United States since mauy countries have not been able to develop their programmes as fully as they would like owing to the limited number of wavelengths which have to be shared betiveen a very large number of countries. But at the noment economic difficulties are tending to make progress slower than it might otherwise be.

PROVINCIAL TELEVISION

CONSIDERABLE confusion has been created in the minds of many laymen by the Assistant Post-master-General's recent remarks, recorded in our March issue, regarding the definition of the provincial television service.

To counteract the "' we'll-wait for-the-higher-definition" attitude now being adopted by some prospective television set purchasers, the Radio Industry Council has issued a statement from which we take the following extracts.
'Mr. Burke indicated that arrangements had been made to run a two-way link between London and Birmingham so that programmes may be sent in either direction either by cable or radio link. This link, he said, will have such characteristics that it will serve equally for the present 405 line service, and for x,ooo line definition, or colour definition when these are commercially possible.
' Mr. Burke's remarks do not mean, as has been so widely represented, that the Birmingham service is to open on these higher standards; only that the same link will serve when these standards are possible.
"It is not the intention to super-

BONE

CONDUCTION

In the past there was a tendency on the part of Hearing Aid suppliers particularly outside this country - to make a feature of Bone Conduction.
Now, with improved quality of other means of reproduction and easily worn Miniature earpieces, the use of Bone Conduction is rapidly declining. Nevertheless, there still exists a small proportion of deafpeople who hear better by Bone Conduction.
The new Multitone Bone Conductor caters for such cases. It is of high impedance type, having a D.C. resistance of 2,500 ohms. and an inductance of 4 henries with zero D.C.
It will operate with all of our instruments and in fact with any valve instrument having high impedance output and possessing sufficient amplification.

Multitone Bone Conductor Valve Hearing Aids from 18 guineas

MULTITONE

ELECTRIC COMPANY LIMITED 92, New Cavendish St., London, W.I. Signatories to the National
Institute for the Deaf Agreement

World of Wireless-

sede the present system to-morrow or for many years. Even when improved transmission standards are possible, existing sets will not be rendered obsolete because the programmes will continue to be available on the present standards as well.

MARCONI JUBILEE

THE jubilee of wireless telegraphy as a practical means of communication is being celebrated this month. We quote from Electrical Review of May 21st, 1897.

Abstract

"Marconi Telegraphy" " The Post Office Telegraph authorities have during the past fortnight been making a series of very interesting experiments with Signor Marconi's system of telegraphy without connecting wires in the Bristol Channel. Experimental stations have been established at Lavernock Point, near Penarth; on the Flat Holmes, an island in midchannel, and at Brean Down, a promontory on the Somerset side. We understand that satisfactory signals have been obtained between the first- and last-named points, a distance of, approximately, eight miles. Signals were also exchanged between Lavernock Point and the Flat Holmes. The receiving instrument used was a Morse ink-writer of the Post Office pattern."

SCIENTIFIC INSTRUMENTS

AFEATURE of this year's exhibition of scientific instruments which was held by the Physical Society at the Imperial College, South Kensington, from April 9th12 th, was the number of Government Departments with stands in the enlarged Research Section. There was also an increase in the number of firms exhibiting in the Trade Section, 118 compared with III in 1946 and 84 in 1939.

A review of the exhibition will be included in next month's issue of Wireless World.

Owing to printing delays the $300-$ page exhibition catalogue-a valuable work of reference-was not available during the show. Copies will, however, be obtainable from the Hon. Sec. (Business), Physical Society, I, Lowther Gardens, Prince Consort Road, London, S.W.7, and will cost non-members $6 s$ by post.

IONOSPHERE RESEARCH

FINE particles of meteoric dust in the lower ionized layers of the upper atmosphere are now considered to make a substantial contribution to their reflecting properties at night.

This is one of the conclusions reached by the ionosphere research workers of the D.S.I.R. and expressed by Sir Edward Appleton at a meeting of the Physical Society.

RADIO INTERFERENCE

I^{N}N reply to a question asked in the House of Commons on March 19th the Assistant PostmasterGeneral stated that legislative action to provide for the compulsory suppression of electrical interference with radio reception is being considered.

He also stated that the " valuable recommendations" made by the Council of the I.E.E. would be taken fully into account.
The problem of radio interference has been investigated by the British Electrical and Allied Industries' Research Association (E.R.A.) for some years, especially during the var. A new sectional committee has recently been set up to " study and develop the electrical equipment of automotive systems with particular reference to electrical ignition systems, radio interference suppression devices and electric accessories." The committee, which is in addition to that set up by E.R.A. some years ago to study the question of electrical interference generally, comprises representatives of the Ministries, the motor and electrical industries and the Department of Scientific and Industrial Research.

COMPACT COMMUNICATION RECEIVER

DESIGNED to withstand rough usage, the Type F.O. 509 receiver made by Philips Transmission (Philips Lamps), Century House, Shaftesbury Avenue, London, W.C.2, measures only $12 \frac{1}{2}$ in by gin by $8 \frac{1}{2} \mathrm{in}$, and weighs approximately 2 I lb, yet the circuit comprises no fewer than ten valves of the 1.4 V type, a neon stabilizer and an internal vibrator for H.T. supply. An R.F. amplifier is followed by a mixer and three stages of I.F. amplification. A beat oscillator

It is claimed that the Philips Type F. O. 509 communication receiver will work when completely
feed a miniature loudspeaker or headphones.

The set is waterproof and practically airtight, but as a precaution a replaceable silica gel desiccator is provided for the interior. Power is provided by a 6 -volt battery from which the total drain is 1.65 A . There are four waveranges covering 1 to $20 \mathrm{Mc} / \mathrm{s}$.

AUCTION SALE PRICES

CONSIDERABLE interest attaches to the prices ruling for surplus radio equipment sold by auction recently from the Ministry of Supply stores on the Watford ByPass Road

Most items were sold in large quantities although bidding was mainly on the basis of so much for each item.

Thirty gramophone motors sold for $\& 4 \mathrm{I} 4 \mathrm{~s}$ each, whilst $5,690 \mathrm{lb}$ of transformer laminations fetched 2 s 2 d a lb, 200 miscellaneous I.F.F. receivers 1256 d each, 250 R.A.F. Type Rinit receivers 8s each, 50 heavy-duty hailing-type loudspeakers $\mathscr{L} 35$ each, $2003 \frac{1}{2}$-in loudspeakers 15 s each, 100 galvanometers and 200 voltmeters (o-15, $0-600$) 145 each.

Component prices varied at different sales. A batch of $3,0005 \mathrm{~mA}$ instrument rectifiers sold for is $2 d$ each, 3.795 miscellaneous electrolytic condensers is 6 d each, $2,79 \mathrm{I}$ assorted high resistance potentiometers sold for $\not £^{26}$ (or about $2 \frac{1}{4} d$ each), 100 intervalve transformers 4s each, 2,000 mains transformers and chokes is gd each, and 3,264 electrolytic condensers is ind each.

Further sales of radio equipment will be held at these stores on May 7 th and 2 Ist, and June $4^{\text {th }}$.
submerged.
is coupled to the third I.F. amplifier and there are alternative demodulators for A.M. and F.M. reception; a single valve combines the functions of limiter and discriminator. Push-pull output valves
\qquad

TELEVISION SOCIETY

A^{1}T the annual dinner of the Television Society, held in London on April Ist under the presidency of Sir Robert Renwick, glowing tributes were paid to the retiring presi-
dent, Dr. Clarence Tierney, who has guided the Society during the 20 years of its life.

Anticipating the extension of television to the provinces, a Midlands Section, with headquarters at Birmingham, has been formed. There are also two new groups within the Society, one for constructors and another for those interested in the programme side. New members of the Council are A. I. Bray, ViceAdml. J. W. Dorling (of the R.IC.) and P. C. Philpot.

OLYMPIA, 1947

PLANS for the National Radio Exhibition at Olympia (October ist-Irth) are already well advanced. According to present proposals, many branches of radio, besides broadcasting and television, will be covered. A large space will be devoted to electronics, with working demonstrations where possible, while the Services and Government departments will stage exhibits. The convenience of export buyers is being specially studied, while television demonstrations will be arranged so that the performance of various receivers may be readily compared.

DANISH BROADCASTING

A
REPORT in Wireless World over a year ago on a tentative proposal to employ very short waves exclusively for Danish internal broadcasting has since been given wider and perhaps rather misleading publicity. We are now asked by the Danish Department of Posts and Telegraphs to say that no arrangement has been made for V.H.F. broadcasting in Denmark. The Kalundborg station will continue to radiate the Danish home programmes, and will not (as was suggested in the proposal) be reserved for overseas transmission.

PERSONALITIES

Sir Stanley Angwin has been appointed chairnan of the Radio Research Board of the Department of Scientific and Industrial Research in succession to Lt. Col. Sir George Lee.
Sir Frank Smith is retiring from the chairmanslip of the Scientific Advisory Council of the Ministry of Supply and is succeeded by Sir John Lennard. Jones, the Ministry's chief scientific officer.
Sir Robert Renwick has been appointed President of the Radio Component Manufacturers' Federation in succession to Sir Percy Greenaway.
Sir Edward Wilshaw, who recently relinquished the chairmanship of Cable and Wireless on the Government's acquisition of the company, has joined the Board of the English Electric Co., which purchased the whole interest of Cable and Wireless in Marconi's last year.

Dr. W. B. Lewis, Ph.D., F.R.S., C.B.E., superintendent of T.R.E., has received the American Medal of Freedom with bronze palm for his work on V.H.F. radiation. He was created a C.B.E. in the 1946 Birthday Honours.
H. Jefferson, M.A., A.M.I.E.E., a frequent contributor to our sister journal Wireless Engineer, has left Marconi's and joined the Transmission Department of L. M. Ericsson in Stuckholm, Sweden.
G. W. Godfrey, who has been appointed general sales manager of Ekco's radio division, is succeeded as radio sales manager by Bentley Jones.
F. C. Robinson and F. J. Dellar have been appointed managing director and sales director, respectively, of Cossor Kadar, Ltd.
T. A. Macauley has been appointed chairman and managing director of A. C. Cossor, Ltd., and L. L. Roberts and J. S. Mitchell, general manager and commercial manager, respectively, of the company's radio and television division. These changes have been inade following the resignation of J. H. Williams and J. W. Horton as joint managing directors.
A. J. Philpot, C.B.E., M.A., B.Sc., F.Inst.P., director of the British Scientific Instrument Research Association, has also been appointed director of the Scientific Instrument Manufacturers' Association of Great Britain.

OBITUARY

We regret to record the deaths of:-
Lt. Col. W. G. H. Miles, who was responsible for producing some of the early editions of the Admiralty Handbook of Wireless Telegraphy. Commissioned Second Lieutenant in the Royal Marines in 1904 at the age of 18, he was appointed Fleet W.T. Officer on the Cape Station from 1920-1922 and was Head of the Admiralty W.T. Board from 1934-1937, when he retired from the Service. Col. Miles was recalled in 1939 and throughout the war served in the signals branch of the Admiralty. Since the war he has been on the Telecommunications Directorate of the Ministry of Civil Aviation.
E. L. Odhams, at the age of 67, who was editor of the B.B.C. journal World Radio until it ceased publication in 1939.

IN BRIEF

Broadcast Licences.-A slight increase in the number of broadcast receiving licences in force at the end of February is announced by the G.P.O. The total of $10,732,500$-including 11,700 television licences-is 500 more than at the end of January, when there was a marked decrease.
U.N.O. Transmitter.-The United Nations Organization is now operating the old League of Nations station at Prangins, Geneva. It started transmitting on April irth on $9.515 \mathrm{Mc} / \mathrm{s}$.

Peruvian Show.-A radio exhibition to last three weeks is to be opened at Lima, Peru, on July 27 th.
B.S.R.A.-A printed journal is to be published by the British Sound Record-

A 'SOUND' PROPOSITION!

ARE YOU A TANNOY STOCKIST?

A restricted number of qualified dealers and P.A. specialists are being appointed as approved stockists for the main trade distribution of Tannoy Sound Equipment.

Having declined to jeopardise the reputation of TANNOY by the introduction of interim equipment to meet insistent demands for"anything at any price" the extensive post-war range of TANNOY Sound Equipment which is now becoming available. embodies all the latest technical developments in design and the highest quality of manufacture. The trade mark "TANNOY" remalns a guarantee of reliability to you and your customer.

Write for the qualificatlons required of stockists and for complete details of the full range of TANNOY Equipment.
'TTANNOY/
GUYR. FOUNTAIN LTD.,
"THE SOUND PEOPLE"
"TANNOY" is the registered
trade mark of equipment manu-
facciured by
GUY R. FOUNTAIN LTD.,
WEST NORWOOD, S.E.27.
GIPSY HIL II3I.

[^10]
World of Wireless-

ing Association in place of the duplicated sheets issued hitherto. Arrangements are also being made to publish a number of booklets and pamphlets on recording and allied subjects. A scheme of regional centres is planned, the first of which is the North-East. The representative is H. Dagnall, M.A., 93, Nab Lane, Mirfield, Yorks.
Brit.I.R.E. Convention.-A radio convention has been planned by the British Institution of Radio Engineers and will be held at the Tollard Hotel, Bournemouth, from May 19th-23rd.
Electronics Exhibition.-The second annual electronics exhibition to be sponsored by the Institution of Electronics will be held in the Great Hall, College of Technology, Manchester, on July 22 nd and 23 rd , from $2.30-9.0$ and io.o-9.0, respectively. Admission will be by ticket, which is obtainable from A. Coates, 16, Didsbury Park, Manchester, 20.

Ohm's Law?-The following extract is taken from an announcement in the Cambridge Daily News:-

WATTS-AMPS. -The engagement is announced between.
The reader who kindly sends the cutting adds, "I hope they have a good ohm to go to."

INDUSTRIAL NEWS

Scottish Exhibition.-The Scottish Committee of the Council of Industrial Design is arranging an exhibition of industrial design which will be held in Edinburgh in August and September. The radio industry will be represented at the exhibition, which is to be called "Enterprise Scotland 1947."
Foire de Paris.-A feature of this year's Trade Fair, which opens in l'aris on May roth, will be the separate exhibition of radio, television and cinema apparatus in the Grand Palais (Champs Elysées), part of which is being used to supplement the established Fair grounds at the Porte de Versailles.
B.E.T.R.O.-Among the enquiries recently received by the British Export Trade Research Organization was one for listening habits in certain inarkets overseas.

New research laboratories have been opened by Elliott Bros. (London) at Elstree Way, Boreham Wood, Herts. Covering $50,000 \mathrm{sq} \mathrm{ft}$, the new laboratories, under the direction of J. F. Coales, O.B.E., M.A., will be devoted to the development of industrial measuring and control devices.

British Moulded Plastics, Ltd., is the new name adopted by De La Rue new name adopted Ltd, which has been acquired by National Plastics, Ltd., 84-86, Regent Street, London, W.I.

[^11]Scophony--At the annual general meeting of Scophony, Ltd., the chairman, Sir Maurice Bonham Carter, announced that the company is developing home television receivers with a viewing screen of about 24 inches.
"How it Changed Our Lives" is the title of an attractive 44 -page brochure issued by E. K. Cole telling the story of the dispersal of the Ekco factories and of the company's return to peacetime production.
V.S.E. Construction Co., of 5-7, Denman Street, London, W.I, will be exhibiting in the radio section of the British Industries Fair which opens on May 5th.
D.P. Battery Co. is exhibiting in the electricity section of the British Industries Fair.
H. A. Hartley Company's new premises at 152, Hammersmith Road, London, W. 6 (telephone: Riverside 7387), are now open for the demonstration of Hartley-Turner equipment.

Radio-Aid, Ltd., has opened retail premises at 2q, Market Street, Watford, Herts.

CLUBS

Birmingham.-The electron microscope will be dealt with by Dr. W. Wilson at the meeting of Slade Radio, at Broomfield Road, Slade Road, Erdington, on May 2nd. The meeting on May 16th will be conducted between three points in the area with the aid of 5 -metre transmission and reception. Sec.: L. A. Griffiths, 34, Florence Road, Sutton Coldfield.
Brighton.-Meetings of the Brighton and Hove Group of the R.S.G.B. are held on alternate Mondays at the "Golden Cross," Western Road, Brighton. The next meeting will be on May 5th, when the subject, will be "Mobile and V.H.F. Receivers." Town Representative, Lt. Cdr. J. R. D. Sainsbury, 80, Lansdowne Place, Hove, Sussex.

Bromley.-Meetings of the NorthWest Kent Amateur Radio Society will continue to be held throughout the summer on the last Friday of each month at 8.0 in the Aylesbury Road School, Bromley, Kent. Sec.: L. Gregory, G2AVI, 18, Upper Park Road, Bromley.
Cambridge.-R. M. Cooper, of Cooper Manufacturing Co., will address the Cambridge University Wireless Society on the Lexington pick-up and sound equipment on April 28 th. Sec. : K. E. Machin, Queen's College, Cambridge.
Kentish Town.-St. Pancras Radio Society is participating in an exhibition at the Kentish Town Men's Institute, where they have their headquarters, on June 28th. It is proposed to show an amateur station being operated. Sec.: H. Brown, 8.4, Blenheim Gardens, Willesden Green, London N.W.2.
Wigan.-The Wigan and District Amateur Radio Club has been granted the call sign $\mathrm{G}_{3} \mathrm{BPK}$ for its transmitter which is operating in the

10-, $20-$ and 40 -metre bands. Sec. : H. King, 2, l lerby Street, Spring View, Wigan.

MEETINGS

Institution of Electrical Engineers
Radio Section. -' Accurate Measurement of the Group Velocity of Radio Waves in the Atmosphere, using Radar Technique," by R. A. Smith, M.A., Ph.I., E. Franklin, B.Sc., Ph.I., and F. B. Whiting, B.Sc., on May 7th.
Discussion on "Future Trend of Component Design for the Services," openers G. W. Sutton, Ph.D., B.Sc., and E. M. Lee, B.Sc., on May 13th.
Both meetings will be held at Savoy Place, London, IV.C.2, at 5.30.
Cambridge Radio Group.-"Crystal Valves," by B. Bleaney, M.A., D.Phil., J. W. Ryde and T. H. Kinman, M.B.E., on May I3th, at 6.30, at the Cavendish Laboratory.
Northern Ireland Centre--Iecture on radiolocation bv E. C. S. Megaw, M.B.E., D.Sc., on May zoth, at 6.45, at Queen's University, Belfast.
South Midland Centre.-' New Possibilities in Speech Transmission," by D. Gabor, Dr. Ing, on April 29th, at 4.

- Industrial Applications of Electronic Techniques," by H. A. Thomas, D.Sc., on May 5 th, at 6.

Both meetings will be held at the James Watt Memorial Institute, Great Charles St., Birmingham.

South Centre.-" "The Development and Study of a Practical Spaced-loop, Direction Finder for High Frequencies, by W. Ross, M.A., on May 2ISt, at 7 , at the Admiralty Signal Establishment, Haslemere.

London Students' Section. - "The Presentation of Technical Information," by A. Duxbury, on May 5th, at 7, at the I.E.E., Savoy Place, W.C. 2.

Institution of Electronics

North-West Branch.-" Radar Navigation," by A. Levin, on May 16th, at 6.45, at the Reynolds Hall, College of Technology, Manchester. Non-members may obtain tickets from L. F. Berry, io5, Birch Avenue, Chadderton, Lancs.

Radio Society of Great Britain

Techniques for the Practical Application of Ionospheric Data to S.W. Transmission and Reception," by T. W. Bennington, on May 3oth, at 6.30, at the I.E.E., Savoy Place, London, W.C. 2.

Television Society

Televesion Picture Quality," by C. L. Hirshman, on May 9th, at 6, at the I.E.E., Savoy Place, London, W.C.2.

British Institution of Radio Engineers

North-Western Section.-Discussion on "Single Side-Band Communication Channels," opener E. C. Cherry, M.Sc., on May 7 th at 6.45 at the College of Technology, Sackville Street, Manchester, 1.

British Kinematograph Society

'Sound Reproducing Equipment," by H. J. Odell and A. T. Sinclair, on Mlay 18th, at II a.m., at the GaumontBritish Theatre, Film House, Wardour Street, London, W.i.

Technical Education \& B.B.C. Quality "Pro Bono Publico"

Degrees for ex-Servicemen

THERE are many competent engineers who have been unable to obtain degrees, largely as a result of the war. Their future career would benefit greatly if they were able to obtain a degree.

The majority of these engineers, whose age in general lies between, say, 25 and 30, have gained sufficient knowledge and experience to enable them to pass Inter. with very little difficulty, but there is at the moment, so far as I have been able to ascertain, no course of study which is convenient for a large number of them, partly because industry is now spread throughout the country to a very much greater extent than hefore the war, while educational facilities are still limited to large centres of population. This, together with the fact that a fiveday week is now fairly general, makes it more difficult than ever to obtain the necessary extra time for travelling considerable distances in order to go to evening classes or to obtain a full day off every week

It is suggested, therefore, that it night be practicable to arrange courses of study at a number of technical colleges throughout the country, either in the form of a full day on Saturday or a half day on Saturday and, say, one, or at most two, evenings per week. It should be borne in mind that engineers and physicists of the grade referred to often require to visit their professional institutes for lectures and, therefore, at least one extra evening per fortnight is likely to be occupied.

If those engineers or physicists who are interested in such a proposal would care to communicate with the writer, he will, if the numbers prove to be sufficient, undertake to communicate with the Ministry of Education on this subject in order to ascertain whether something can be done to meet their wishes. Will they please state name, address, whether it is desired to take a degree in physics or in engineering, state the name of the nearest technical college at which it is desired to attend and whether allday Saturday or part of Saturday and evening work is preferred. To enable such courses to commence in September of this year immediate action is required and, therefore, an early reply would be appreciated.

The following two types of course are proposed and the replies should state which is preferred
(I) A two-year course, leading to final B.Sc. or B.Sc. (Eng.) for engineers who have already passed Inter or who will be able to pass Inter.
(2) A similar course, starting in September and lasting, say, three years, for those who would be able to pass Inter, next year.

It should be stressed that the Ministry of Education, to whom a copy of this letter is being sent, cannot be expected to provide such courses unless a genuine need for them exists. O. S. PUCKI.E.

> R. F. Equipment, Ltd.,
> Langley Park,
> Nr. Slough, Bucks.

Shortland Circuit Symbols

(Wireless World, March.) Points from Readers' Letters.
A PENTAGON, heptagon or octagon is more easily drawn than a circle? What nonsense! Try it. How any of the author's mazy-eyed students could have visualized any electronic action in any of his Epstein symbols is amazing. V.E. WALKER

Gravesend
$W^{\text {HILE }}$ admitting that the proposed symbols save a great deal of time in drawing circuit diagrams, it is doubtful if this advantage warrants a change. The recognized standard symbols are (with slight variations) used almost universally in every country and it would require international conferences to have them changed.

Carlisle

B.B.C. Transmissions

THE Chief Engineer of the B.B.C gives us no hope in his letter published in your March issue, of improvement except in canned programmes. I fail to see why the responsibility of reporting bad transmissions should rest on the listener. Is it too much to expect the B.B.C. to make sure the stuff is all right before it is sent out?
Mr. Bishop's letter shows he has no case. My letter pointed out that occasionally the B.B.C. transmission quality was superb, but the widespread complaint is that the general standard of quality is deplorable. This has no relation to wavelengths and congested ethers

C.P. 20 A 15 WATT AMPLIFIER

for 12 volt battery and A.C. Mains operation. This improved version has switch change-over from A.C. co D.C. and "stand by" positions and only consumes $5 \frac{1}{2}$ amperes from 12 volt battery. Fitted mu-metal shielded microphone transformer for 15 ohm microphone, and provision for crystal or moving iron pick-up with tone control for bass and top and outputs for 7.5 and 15 ohms. Com= plete in steel case with valves.

As illustrated. Price $\mathbf{6 2 8} 00$

"SUPER FIFTY WATT" AMPLIFIER

This Amplifier has a response of 30 cps . to 25,000 cps., within $\frac{d}{} \mathrm{db}$, under 2 per cent. distortion at 40 wates and I per cent. at 15 wates, including noise and cistortion of pre-amplifier and microphone transformer. Electronic mixing for microphone and gramophone of either high or low impedance with top and bass controls Output for $15 / 250$ ohms with generous voice coil feedback to minimise speaker distortion. New style easy access steel case gives recessed controls, making transport safe and easy. Exceedingly well ventilated for long life. Amplifier complete in steel case, with built-in 15 ohm mu-metal shielded microphone transformer, tropical finish.

Price $36 \frac{1}{2}$ Gns.

AD/47 10-VALVE TRIODE CATHODE FOLLOWER AMPLIFIER

For this recording and play-back Amplifier we claim an overall distortion of only 0.01% as measured on a distcrtion factor meter at middle frequencies for a 10 -watt output. The output transformer can be switched from 15 ohms to transformer can be switched from the ohms to
2,000 ohms, for recording purposes, the measured damping factor being 40 times in each case. Full details upon request.
Dealers and Export Agents should write for special terms to :-

VORTEXION LTD.
 257-26I, THE BROADWAY, WIMBLEDON, LONDON, S.W. 19

Telephones: LIBerty 2814 and 6242/3. Telegrams: "VORTEXION, WIMBLE, LONDON."

Letters to the Editor-

for (as I am advised) the programmes are distorted before they get to the transmitter. I have been told by scores of people that a station like Hilversum sounds far better than the local B.B.C. transmitter. Why?

It is necessary to point out that the radio industry generally is interested in producing better sets. But with B.B.C. transmissions as they are, the urge to do so is destroyed. It is not without significance that the more expensive reproducers catering for discriminating users do not even include a radio receiver

Mly numerous correspondents on this matter complain bitterly that doubled licence fees for a service greatly inferior to that of prewar days is an imposition, and one tliat is not mitigated by complacency on the part of the B.B.C.

> H. A. HARTLEY

London, W. 6.

Educating the Public

IN the leading article of your February issue you rightly emphasize the fact that the broadcast receiver is a scientific instrument. You also refer to a change in public attitude, " due partly to a general tendency towards mechanization and electrification.

I write to express the hope that the first tendency in this change of attitude will be an awareness of the limitations of these scientific instru-ments-even the best of themwhen used without an efficient aerial system.

Can it be denied that the bulk of the ten million - odd broadcast licensees know next to nothing, and care less, apparently, about the unique possibilities afforded by the
modern receiver; they have been encouraged for so long to use, or rather misuse, them sans aerials, sans earth, sans tears, solely for local reception, or, at best, with some miserable apology for an aerial.

The result of this general practice -the static setting of most tuning dials, or the occasional excursion, through a medley of hisses and crackles, to the "other" station-is too well known to need expansion.

I would also comment on 'Diallist's" diatribe against the radio industry for its " lack of vision," at a time when its material and labour resources must be stretched to the limit in establishing and maintaining our new export markets - and sustaining other industries with electronic aids, etc. With less sectional bias, "Diallist" might have expressed amazement at the industry's ability to spare material and labour for even the $4+1$ set.

Any " lack of vision," I venture to suggest, is in not preparing for the day, when we can better afford the home consumption of these luxuries: by providing a materially cheaper standard receiver only and. equally important, its equivalent in kit form, for hone assembly, so that the thousands of mechanically and electrically minded young men and women can help to equip their new homes with receivers of a type more in keeping with the times.

Thus we might reasonably look forward to the day when, having paid for all those shiploads of peaches and pomegranates, as well as the other more homely items needed to sustain us, there will be a real and intelligent demand for bigger and better radios for broadcasting and a better appreciation of it.
T. H. KINMAN.

Rugby.
Books issued in conjunction with "Wireless World"Net
Price $\begin{gathered}\text { Post- } \\ \text { age }\end{gathered}$
TELEVISION RECEIVING EOUIPMENT, by W. T. Cocking,M.I.E.E., 2nd Edition12/6 (5d.)FOUNDATIONS OF WIRELESS. Fourth revised Edition, byM. G. Scroggie, B.Sc., M.I.E.E.$7 / 6$ (41.)
RADIO LABORATORY HANDBOOK, by M. G. Scroggie, B.Sc.M.I.E.E., 3rd Edition12/6 (4d.)
WIRELESS SERVICING MANLAL, by W. T. Cocking, M.I.E.E.,Seventh Edition$10 / 6$ (4d.)
HANDBOOK OF TECHNICAL INSTRUCTION FOR WIRELESSTELEGRAPHISTS, by H. M. Dowsett, M.I.E.E., F.Inst.P.,and L. E. Q. Walker, A.R.C.S., Elghth Edition30/- (8d.)BASIC MATHEMATICS FOR RADIO STUDENTS, by F. M.Colebrook, B.Sc., D.I.C., A.C.G.I.10/6 (4d.)
RADIO DATA CHARTS. Fourth Edition, Revised by J. McG. Sowerby, B.A., Grad. I.E.E.6d. ($1 \frac{1}{2} \mathrm{~d}$.
LEARNING MORSE. 335th thousand
RADIO WAVES AND THE IONOSPHERE, by T. W. Bennington 6/ (3d.)

Obtainable from booksellers everywhere or
direct (cash with order) from the publishers
ILIFFE \& SONS LTD., Dorset House, Stamford Street, London, S.E.1.

AMERICAN COLOUR TELEVISION

THE Federal Communications Commission recently heard technical evidence for and against the petition put forward by the Columbia Broadcasting System for authority to operate colour television stations. The petition requested frequency allocations in the $480-920 \mathrm{Mc} / \mathrm{s}$ band and the amendment of the F.C.C. Standards of Good Engineering Practice Concerning Television Broadcast Stations to permit the operation of stations utilizing the colour-television system developed by Columbia.
The petition was refused and the Commission's report (Docket No. 7896) dated March 18th, 1947, gives a summary of the evidence and the reasons for the refushl.
I_{n} the Columbia system each colour-television transmission occupies a total bandwidth of $16 \mathrm{Mc} / \mathrm{s}$. In the scanning process each picture is scanned in sequence through separate colour nilters-red, green and blue. At the receiving end the picture on the cathode-ray tube is viewed through similar filters mounted in a wheel which rotates in front of the tube in synchronism with the transmitter. The transmissions in the separate colours follow each other at the rate of 48 per second, and there are twenty-four complete frames a second. An interlaced scanning system is used.
At the hearing Columbia put forward evidence in support of their system and demonstrated it. Other firms working on colour television opposed the petition and demonstrated alternative systems, but no other firm applied for its system to be approved.
The Columbia equipment demonstrated had a 7 -in directly viewed tube and gave a brightness of 15 foot-lamberts on highlights. It was stated that laboratory models produced 22 foot-lamberts. Philco demonstrated a projection set giving black-and-white pictures with a brightness of 35 foot-lamberts.

Columbia took the view that these differences were not important because 15 foot-lamberts was adequate, contrast being more important than intrinsic brightness. In this connection they stated that, under conditions of ambient lighting, the use of the colour filters gave a marked advantage over the direct viewing of the tube face in black-and-white systems. The losses of the filters are operative twice on ambient lighting, since it passes the filter, is reflected from the tube face and passes out through the filter again, but only once for the picture
itself. The filters used pass only io per cent of the light from the tube and so pass only 1 per cent of the ambient light.

Flicker is greatly tied up with this question of picture brightness. The Columbia witnesses disagreed with those of other companies about the point at which flicker becomes noticeable. They stated that it appeared at an illumination of 23 footlamberts and became objectionable at 52 foot-lamberts.

The system has been criticized on the score of inadequate brightness. If this is true, then with a brighter picture flicker is likely to become more important. It is affected in some degree by the choice of colour filters, but more generally its reduction involves an increase of frame frequency and so of bandwidth. Columbia were opposed to an increase of frame frequency. The use of tubes with a slow-decay phospher was suggested by Columbia, but DuMont said that they had found them objectionable and R.C.A. experiments with them had shown them to be very complicated
The main objection to the use of a higher frame frequency is the increase of bandwidth, which is already $16 \mathrm{Mc} / \mathrm{s}$. In this connec tion R.C.A. demonstrated a system having a frame rate of 30 per second, instead of the Columbia ${ }^{24}$, which could be accommodated with in a $12.5-\mathrm{Mc} / \mathrm{s}$ band. This employs simultaneous, instead of sequential, colour transmission.
Most of the conflict of evidence was on matters which could readily be settled by trials. The F.C.C. felt that the demonstrations given to them were inconclusive and that extended field trials under domestic conditions are essential. So far it appeared that no more than fifteen receivers had been in operation and that all of them were in the hands of Columbia. In the case of black-and-white pictures, before the present standards were adopted there were at least seven transmitters in operation and several thousand receivers, many of which were in the hands of the public. The F.C.C. did not take the view that large numbers of receivers were necessary for adequate trials, but that a small number would provide the necessary information if tried out under sufficiently diverse conditions.
In refusing Columbia's petition, the F.C.C. pointed out that in their view there were two specific problems requiring careful examination. First, the development of low-cost television receivers. Secondly, experiment with a view to finding methods of transmitting colour television within narrower bandwidths than at present possible.

ESPECIALLY designed for appliances which are most effectively and conveniently controlled by a foot-operated switch this new Bulgin Type S 360 combines a high efficiency action with absolute reliability. Ideally suitable for vacuum cleaners, hairdryers, foot-operated drills and other similar apparatus its application covers a wide range of commercial requirements. The $S 360$ is a Push/Push, Single Pole switch and fixes by a single $\frac{15}{32^{\prime \prime}}$ o hole to panels up to $\frac{l^{\prime \prime}}{}$ thick. It is fitted with a large black rubber knob held captive but easily removable for mounting, and operated by $\frac{1^{\prime \prime}}{}$ displacement at $4 \frac{1}{2} \mathrm{lbs}$. min., $6 \frac{1}{2} \mathrm{lbs}$. max. pressure. Rear of panel space is approximately $1 \frac{1}{2}^{\prime \prime} \times 1^{1 / 2} \times \frac{18^{\prime \prime}}{} \mathrm{min}$. rear projection. End terminals are included for connections. Rating :-Working, 250 volt max., 2 A. max. for loads of $1-0.7$ p.f. Tested at I KV. to E .

Available for Prompt Defivery
"The Cboice of Critics"
BULGIN

A.F.BULGIN E CO. LTD. BYE-PASS-RD. BARKING

Telephone: RIPpleway 3474 (5 linis)

RECENT INVENTIONS

A Selection of the More Interesting Radio Developments

S.W. AERIALS

AWIDE-BAND aerial, particularly suitable for aircraft, consists of a conical element C surmounted by a disc element D , the two poles being coupled

Wide-band aircraft aerial
to the outer and inner conductors, respectively, of a coaxial feed line L . The base of the cone C is welded to the fuselage F. If the latter is of metal it acts as an extension of the lower aerial; if it is of insulating material, it may be coated with a conductive layer over an area determined by the operating frequency band.
The cone may be made shorter in height and wider at the base, and the disc curved over it, so as to make a squat assembly that readily fits inside a streamlined "blister" or casing.
Standard Telephones and Cables, Ltd. (assignees of A. G. Kandoian) Convention date (U.S.A.) May 15th, 1943. No. 578457 .

CATHODE-RAY SCANNING CIRCUITS

SAW-TOOTH oscillations are usually fed to the frame deflecting coils of a television receiver, either through a transformer coupling, or else through a choke and blocking condenser, to block out the D.C. component which would otherwise tend to displace the normal focusing of the scanning beam at the centre of the screen.
To avoid the necessity of using a heavy transformer or choke, the H.T. supply for the saw-tooth oscillationgenerator is taken, through a series resistance, from the cathode of an auxiliary pentode valve, both valves being biased to operate as Class A amplifiers. At each upward swing of the scanning voltage, a negative

> The British abstracts published here are prepared with the permission of the Controller of H.M. Stationery Office, from gpecifications obtalnable at the Patent Office, 25 , Southampton Buildings, London, W.C.2, price 1/- each.
voltage is applied from the series resistance to the grid of the ausiliary pentode. This automatically limits the current supply to an extent that cuts out any D.C. component from the pulses fed to the deflecting coils.
Marconi's Wireless Telegraph Co., Lid. (assignees of T. T. Eaton). Convention date (U.S.A.) September 25th. 1941. No. 577216.

ELECTRON DISCHARGE TUBE

A electron beam is first bunched, A or velocity-modulated, and is then multiplied, in the same tube, by secondary emission. The high gain thus secured allows both the primary beam, and its transit time, to be kept comparatively small, and so gives the tube a high input impedance.
In the amplifier shown, electrons from the gun G pass through the centre gap in a resonator R, which is coupled to an input loop L. The bunched stream is next projected against a series of secondary-emission electrodes, as indicated by the arrows; the stream is multiplied or intensified at each im-

TELLEVISION

WHEN scanning the mosaic screen of a television camera, secondary electrons are emitted and subsequently tall back on to the screen, where they create spurious currents which give rise to the fault known as "shading" in the received picture.
To avoid this effect, the scanning beam is periodically interrupted at a frequency which is higher than any of the signals to be transmitted. During the time when the beam is actually in contact with the sensitive screen, both video-frequency signals and undesired
'shading" components are generated. In the intervals when the beain is suppressed, only the shading currents are present. The two groups of signals are opposed in the output circuit of the tube, where the undesired currents counterbalance each other, and leave the radiated signal free from the fault in question.

Hazeltine Corp. (assignees of A. V. Loughren). Convention date March 30th. 1943. No. 579600.

FLUORESCENT SCREENS

THE screen of a cathode-ray tube is given two different coatings of fluorescent material. The first layer, say of zinc-cadmium sulphide, produces a persistent yellowish afterglow. A superposed layer, say of zinc sulphide, reacts to the scanning stream by giving a transient blue flash, which serves to excite afterglow in the layer beneath

Velocity-modulated electron multiplier
pact, without losing its characteristic grouping, since the new electrons are liberated instantaneously. The augmented stream is then focused through the gap in a second resonator RI, where it delivers up energy to be drawn off through the output loop Li. The spent electrons are collected from the strean by an anode A.
Standard Telephones and Cables, Ltd (assignees of R. V. L. Hartley and C. V. Parker). Application date April 30th, 1942. No. 578271.

The combination is particularly useful for minimizing the effect of casual interference when recording pulses or other cyclically repeated signals, since the afterglow which is gradually built up by such signals is easily distinguished. By viewing the screen through a colour filter that absorbs more blue light than yellow, the originally faint traces of interference are still further diminished.
A. C. Cossor, Ltd.; F. M. Walker; and E.E. Shelton. Application dale July 13th. 1939. No. 578582 .

double cup ceramicons

ERIE

The ERIE Double-Cup Ceramicon, the first of a range of new products scheduled for production in 1947, is the result of the need for a high voltage ceramic condenser that will carry appreciable current at high voltage and will retain the advantage of being a compact, single-piece unit.

As the cross sectional drawing shows, the ceramic dielectric has a centre web which is integral with the tubular casing, providing the required long crespage path. The silver plates are fired on to the ceramic on each side of the wek and carried without interruption to the rim of each cup, thus greatly increasing the voltage at which corona occurs. Electrical connections are made by means of electro-silver plated metal terminals soldered to the electrodes.

This design has the necessary basic features for high voltage applications at high frequencies. The web section is sufficiently thick to prevent breakdown of the dielectric. and the design described provides adequate protection against flash-over at the rated voltage. Heavy metal terminals serve to dissipate internal heat and provide a 360° contact for the current to fan out to the electrodes. Rating is 5 KVA .

The ceramic dielectric employed is made of the same titanium dioxide series as the well-known temperature compensating tubular Ceramicons. This material plus careful control of processing operations assures stability with respect to temperature, excellent retrace, and high Q factor.

Speech Coil 3 or 15 ohms. Impedance. PRICE 75/-

NEW GOLDEN 10 inch LOUDSPEAKER
During the last six years hundreds of Wharfedale Golden Units have been supplied, and are still being supplied, to the B.B.C. and G.P.O. It was selected by reason of its level response. The new model is fitted with precision die-cast chassis, improved spider, and Alcomax II Magnet increasing the flux density from 10,000 to 12,500 . Delivery $6-8$ weeks.

Made and Guaranteed by WHARFEDALE WIRELESS WORKS BRADFORD ROAD, IDLE, BRADFORD Telephone: IDLE 46I.

Telegrams: Wharidel, Idle, Bradford

FOR THE RADIO SERVICEMAN DEALER AND OWNER

The man who enrols for an I.C.S. Radio Course learns radio thoroughly, completely, practically. When he earns his Diploma, he will KNOW radio. We are not content merely to teach the principles of radio, we want to show our students how to apply that training in practical, every-day radio service work. We train them to be successful!
Write to the I.C.S. Advisory Dept. stating your requirements. Our advice is free and places you under no obligation.

INTERNATIONAL CORRESPONDENCE SCHOOLS Ltd.

DEPT. 38, INTERNATIONAL BUILDINGS, KINGSWAY, LONDON, W.C. 2 Please explain fully about your Instruction in the subject marked X

Complete Radio Engineering Radio Service Engineering Elementary Radio
And the following Radio Examinations:-
British Institution of Radio Engineers
P.M.G. Certificates for Wireless Operators City and Guilds Telecommunications
Wireless Operators and Wireless Mechanics, R.A.F.
Name
Age ---"-...
\qquad
\qquad

The Substandard

Multi-Range Meter

This hand-made instrument has been supplied to most of the leading laboratories and research institutions in the country.
44 Ranges. 6" Mirror Scale. Moring-coil cut-out.

ELECTRONIC INSTRUMENTS LTD

17 paradise road, richmond, surrey-
 R

BY ORDER OF THE MINISTER OF SUPPLY
Sales by Auction without Reserve of RADIO, RADAR \& ELECTRICAL EQUIPMENT \& COMPONENT PARTS
will be held at about fortnightly intervals at the Ministry of Supply Stores Depot

ALDENHAM

ON THE WATFORD BY-PASS

Slightly to the West of "Suicide Corner"
NEAR ELSTREE, HERTS
The next of these Sales will be held on
WEDNESDAY, 7th MAY, 1947
at II a.m.
and others will follow on
May 2Ist and June 4th
Further details of the Auctioneers

GODDARD \& SMITH

head offices \& estate auction hall
22, KING STREET, ST. JAMES'S, LONDON, S.W.J

Rate $6 /$ - Ior 2 lines or less and $3 /$ - for every additional line or part thereot, Average lines $5-6$ words. Box
Numbers 2 words, plus $1 /-$. Press Day $:$ June 1947 issue, first post Wedue:day. May 7 th. No responsibility accepted for efrors.

WARNING

Readers are warned that Government surplus components which may be offered for sale through our columns carry no manufacturer's guarantee. Many of these components will huve been designed for special purposes making them unsuitable for civilion use, or may have deteriorated as a result of the conditions under which they have been stored. We cannot undertake to deal with any complaints regarding any such components purchased.

NEW RECEIVERS AND AMPLIFIERS

H

 OMI price--Box 7748. Commilian supplies recommence we shall be at your service.-A.C.S. Radio, 44, Widnore CUMMUNICATION Dale CUwill have them as receivers.- soon con ditions allow.-- Remember-Dale Electronics, Ltd., 105, Bolsover St., W.1. Mus. 1023.SEMI-MIDGET ac/de 3-waveband 5-valve superhets; retail price, ${ }^{\text {e } 12 / 12, ~ n u s . ~}$ also sets designed to specification; immediate delivery
PARKER Radio Manufacturing Co., 756, A MPLIFIERS; new 1947 model Ili-Fi units, mer's specification - Broadcast \& mer's specification. - Broadcast \& Acoustic
Equipment Co., Ltd., Broadcast House, Tombland, Norwich 26970
SMOR A.C.-I.C. 3 -wave 5 v super [6433 ceivers, excellent reproduction and sensitivity, attractive cabinet, early delivery,
shipping waveband if reguired: shipping waveband if required; write for literature; trado enquiries invited-Morgan, Osborne \& Co.. Ltd., Southview Rd., Warlingham, Surrey.
OSMOR A.C.-B.C. 5 y 3-wave superhet radio Coil heart, includes (fully assembled) chassis, colt pack, calibrated dial, 2 -gang, I.F.S., V.C. choke, 8-16, dropper, circuit diagrams, small cabinets available; trade enquiries invited. Morgan, Osborne \& Co., Ltd., Southview Ril.. Warlingham, Surrey,
HIGH-FIDELITY amplifier, 3 watts ontput, 1 using the unique cathode follower cirgiving vastly improved transient response, independent treble and bass boosts, easy to assemble from large diagrams, the complete aseemble from large dagrams, kitue complete components of high grade; the kit coinnlete with diagrams, £11/5-Charles Amplifiers witd le palace Gate, Kensington, London ${ }^{W}$. LVER Dragon quality communications receiver, Custom-built precision job giving the sensitivity of the communications set plus very high quality reproduction, superb walnut console cabmet, wave on $9.8-100$ metres metres With.V.C. and volume expansion, independent top and bass boost with compensated rolunie control; a very versatile rereiver it will be worth while investigating.-Full details from the manulacturers, Moreton Cheyney Co., Lid.
Stafford. Enquiries from overseas especially invited. A.F. radar "Identification Friend or L. Foe" transmitter-receivers, operates between 155-185 megacycles, and easily convertible for amateur use, complete with 10 valves, 2 type RK34, 1 type EF50, 4 type tor, only 79/6 (carriage 4/-); Canadian type 58 Mk. 1 "Star" transmitter-receivers, complete with 8 valves, 2 sets of headphones and etc., and instruction books, all brand new, in original manufacturer's cartons, complete and ready to switch on, orly $£ 10 / 10$ (carriage $5 /-$) illustrated leaflet available on applica"Test Equipment", offerinertisement unde meters.-U.E.I. Corpn., 32, St. Gabriels Rd. LOndon, N.W. ${ }^{2}$ AMPLIFIERS-SECOND-HAND $V^{55 R} \underset{f 28 / 10-\text { Box } 7810}{\text { communication }}$ receiver, as nell \boldsymbol{R}^{1155} rec, new, £11; Magna vox/P.M. 12 in. ranges, ac/dc volts, de m.a., ohms. \&4-Box 7423. \mathbf{R}^{1155} conditiommunication receiver, excellent 15/- VC52 15/--Box 7534.

Ifartrioge

R_{16}^{1155} R.A.F. receivers, excellent condition, N nearly new metres; £15.
iN nearly new condition, realigned and calibrated, guaranteed working order: $x 17 / 10$. CAN be supplied with output stage/power pack and loudspeaker; £27/10.
FULJY modified. as lollows, becomes an al, round super set with high quality output D.F. parts removed, new front panel, bass and treble boost with separate tone controls, R.C. coupled push-pull output ($2-\mathrm{PX} 4 \mathrm{~s}$), gram in. put, other refinements, complete with loudspeaker; £35.-Write for details.
R1155s already purchased, modified and ser viced and power packs supplied.-R.T.S.. Ltd.. 8, Gladstone Rd., Wimbledon, S.W. 19 Tel.
HALLICRAFTERS S27, 27.8 to 143 mcs , $\mathrm{am}-\mathrm{fm}$, s. meter, $\quad 110-230 \mathrm{v}, 15$ valves, as R1 receiver, complete all accessori 244 D CR1 receler pack ande an accessories, ac/ London, N.W.3.-Box 7742 . IfOR sale, Marconi television set, model 709. just reconditioned: offers invited.-AdverC.S. RADIO, 44, Widmore Rd., Bromley, dio receivers and amplifiers; list free. sets. DHILIPS' communications; list iree.
PHiLlp' communication receiver, speaker, Higgs. 12 , Derby Rd.., Caversham, Reading.
HOWARD 460 comm. recvr, 10 valves, buit1 ir freq. Monitor, band spread, Xtal, with spkr, 0.5 to 43 mcs ; offer over £35--Boz 7751. COMMUNICATION receiver, R.C.A. A.R. 88. Uas new; also all types of measuring and test equipment; write for particulars. - Box 7533. \mathbf{R}^{1155}, in excellent condition; £11.-Davies, TEI.EVISION G.E.C., 10×8 picture, 1939 1. model, in unseratched condition, prefer ence given to buyer in service area; $£ 70$. Wanted, K.C.A. AR88 receiver.-A. V. Spray,
 1 pletely overhauled Webb's Radio, with 2 matched Magnavox mains speakers and power pack, giving quality reproduction.-Offers to Mould, 71, Godalming Av., Wallington, Surrey. H ALLLICRAFTER comm. recvr., 11 valves, tal gate, bio, spare set valwes, $£ 40$ or nearest offer; 50 watt amplifier, mike or gram operation, 600 ohms output, £30.-Write MEPICAN R C
A. MERICAN R.C.A. 7-valve ace 110v pushoutput transformer, negative feedback, grani jack, tone control, Ma-Metal mike transformer, etc., high quality equipment, 18 gns complete; new boxed R.C.A. 954, 956 Acorn valves, 12/6; R.G.D. Eko tyne, powerful ac 14-22 volts radio tuning motors, with nuting 8 witch auto clutch, forward-reverse terminals, and geared approx 60rpm, $1 / 4$ driving shafts, new boxed, $20 /-$; ac transformer, 230 to 24, 14 and 6 volts, $19 /-\mathrm{F}$ alum sheet, $12 \mathrm{in} \times 12 \mathrm{in}$, gauge ${ }_{22-31}{ }^{16}$ at $2 / 6 .-J a c k$ Porter, Litd. '" Radio, 22-31, College Sti. Worcester. Tel. 2442.
VO 40, good cond.; £12.-Wintle, 9,
A. Ashurst Rd, E. Barnet.
B. P. sig. generator, almost new; $\begin{aligned} & \text { Flis. } \\ & \text { Flints, } \\ & \text { 49, Summer Row, Birmingham. }\end{aligned}$ O SCILLOSCOPE, Cossor 3314, £15; meter, Lewis. Morgan Cres., Theydon Bois, Essex
$\boldsymbol{F}^{10 R}$ sale, Weston type 3 analyser, model near offer.-W. II. P., 92, Broad Oaks Rd. Solihull, B'ham. $[7270$ TWO valve voltmeters (one Salford Electrithe other Weston model 669),-OHers over f10 or each to Boz 7605 . 7281 M ETVER rectifiers by Westinghouse, new, 3/- each, cw. $\times 5 / 8 \mathrm{in}$, tag ends, half-ited.-Stott, 87. Brixtón Hill, S.W.2. [7121 M ILLIAMMETTERS, desk type $0-1$, suitable 27/6; voltmeters, portable in case, 0-150, 18/6.-Wolsey Television, Ltd., 87, Brixton TMANKS for waiting.-The Roberts portable combined valve and circuit analyser ready for distribution (in rotation) in March. Particulars and price from Sole Distributors, Messrs. Kerry's (Great Britain), Ltd., Warton Rd., Stratiord, London, E. 15 .
TVERSHED's Vignoles, self contained bridge megger (500 v), Varley tests, perfect: $£ 25$ or nearest offer brand new unused Weston analyzer, E772, in maker's carrying case, $£ 19$; Avo valve tester, complete, in perfect order.
\&16; write for our list of radio bargains and associaterl products.
SNFLL Arcarle, Swansea Est. 1900. Tel.
[7197

POWER POTENTIOMETERS

TYPE P.I.W.
Continuous Wire-Wound
Rating : 20 watts max. (linear).
15 watts max. (graded)
Ranges : $10-500,000$ ohms max. (linear) $100-250,000$ ohms max. (graded) $100-50,000$ ohms max. (noninductive).

Characteristics

Linear, tapered, graded, log., semi-log inverse log., non-inductive, etc.

Write forfull details to

RELIANCE

Manufacturing Co. (Southwark) Ltd. Sutherland Road, Higham Hill. Walthamstow
Telephone Larkswood 3245

BAKERS 'Selhurst' numan RADIO
 18 " and 12" P.M. QUALITY SPEAKERS 8 and 15 WATT AMPLIFIERS

PIONEERS OF MOVING COIL SPEAKERS

Improved 1947 MODELS

CINEMA Model 88196
AUDITORIUM Model E5 186

BAKERS 'SELHURST' RADIO
75-77 Sussex Road, South Croydon, Surrey

SIGNAL generators, $100 \mathrm{kc} / \mathrm{s}$ to $50 \mathrm{mc} / \mathrm{s}$ direct calibration in 6 ranges, accuracy 1%, ac operation $200-250$ volts, first class job; 15 gns ; write for full specification; hire pur chase arranged.-Radio \& Electronic Develop ment Co., Moretonhampstead, Devon. [7201 NEW boxed radar indicator, comprising 6 in short afterglow green tube complete with time base, etc., 7 valves. ideal for oscillograph and television service, cost approx. $£ 35$; our price f6/10; p. and p. 10/-extra.-Pal Radio 142, Crouch Hill, London, N.8. Mou. 4463. $W_{\text {Mark II }}^{\text {AVAS, }}$ ex-Govt., class D No. 1 $8,000 \mathrm{kc} / \mathrm{s}$, check frequencies at intervals o 1 mc up to $25 \mathrm{mc} / \mathrm{s}$, oscillator crystal check, battery operated, supplied with spare vibrator spare valve, and instruction book, brand new; £6/15, carriage paid; send for fully descrip live leaflet: also a few only less spares at 85 Rd., London, N.W. 2
[5910 NUPLANS, the testgear specialists, now simple 2 valve No. 5, the Nuplans calibrater in al! bands for generator, receiver, etc., calibration: also No. 6. the Nuplans oscilloscope, a versatile yet simple circuit with a 1 -hard valve time base; plans and details, $2 / 6$ each valve time base; plans and details, $2 / 6$ each
circuit, from E. N.Bradley," Whinnie Knowe," Escalls Cliff, Sennen, Cornwall. S.a.e. for $\begin{array}{ll}\text { Escalls Cliff, Sennen, Cornwall. S.a.e. for } \\ \text { details of other testgear plans. } & {[7283}\end{array}$ NEW LOUDSPEAKERS
Q UANTITY of 8 in P.M. speakers for sale, brand new; 21/-each, plus 1/-carriage.-Box 7430 . 77211 SUPPLIES of 5 in to 15 in P.M. speakers, stands; armature crystal microphones and stands; armature crystal and moving-coil
P.U.s; all components including matched resistors and valves available for high fidelity amplifiers and receivers and W.W. circuits wo stock only the highest grade components. Write Rogers Developments Co., 15, Llanover Rd., Plumstead, S.E.18, or phone Woo. 4147 LOUDSPEAKERS, SECOND.HAND
B AKER'S P.M. audtorimm spkr, 12 in, new TARTLEY-TURNER, model 215 brand H. new, \&7/15.-Seymour, 19, Parkhurst Court, Holloway. N. 7 . $[7292$ VOIGT, as new condition, \&17; Triometer Grove, Kings Heath, Bham. 14. "7255 HARTLEY Turner 215, baffle, perfect
 VOIGT loud speaker, new condition, comıplete ands," Flack well Hth- Bucks. Bourne End 851 I NFINITE baffle corner deflector with broad

R ADIOGRAPHIC, Ltd., 66, Osbarne St. TR Glasgow, C. 1.
TRANSMITTING valves.-Have availab:e the following types :
RK25, RK60, RK65, 6AC7/1852, 843, 865, $841.832,803,872,837,813,805$. 955,954 $6 \mathrm{AB} 7 / 1853,814,836$. $250 \mathrm{TH}, 100 \mathrm{TH}, 811$ 9003, 9002 829. 838, 860, 956. 800, 830 815, $150 \mathrm{TH}, 282 \mathrm{~A}, 832 \mathrm{~A}, 50 \mathrm{Y} 6 \mathrm{GT}, 6 \mathrm{~L} 6 \mathrm{M}$ $35 \mathrm{~T}, 24 \mathrm{G}, \mathrm{TZ} 40$, T'200, 866 , RK $20,1625,807$ All new and unused, guaranteed. Send s.a.e
for price list.
RADIOGRAPHIC. Ltd., 66, Osborne St. Glasgow, C. 1

Ltd., 66. Osborne $[7288$
 and unused. $7 / 6$ each.-Box 7608 . $[7278$ HAMS disposal, quantity of 6j $6,6 A G 5 \mathrm{~s}$, Richnond Terrace, Gateshead-on-Tyne. [7269 YALVES. Is your work held up for valves? have large stocks of be able to beln you; we have large stocks of an types available at ist prices; send for monthly lists.-Scott's Valve STRITH RADIOCRAF'F, Ltt., the Leicester 1 Specialists, offer from their comprehensive stocks : Over 5,000 receiving and transmitting yalves including many difficult types, Wearite. Labgear and Atkins coils, most types, $3 /-$ to 4/6 each; L.M. and S. shet coil packs, 39/6; leaflet post free; 100% tried and tested designs for s'het 3 wave tuner, $5 v$ A.C.-D.C. s'het midget, $2 / 6$ each; Serviceman's parcels of small condensers and resistors, $\& 1$ per $1 / 2$ gross; all-wave B.M. dials, $7 \mathrm{in} \times 4 \mathrm{in}$, with glass and escutcheon. 12/6; Woden diecast output transformers, 6.000 and 10.000Ω, A to A. CT, $3-15 \Omega$ sec.. $30 \mathrm{w}, 39 / 6$; also most woden types as maker's list; wide range of Eddystone, Raymart and Labgear components from stock.
FRITH RADIOCRAF"T. Ltd. Churcigate Leicester.
[7193

DON'T MISS THESE!

Special Cfitr.-Cabinet Speakers, sizo approx. 10in. x
loin. x viu., fitted with Goodman sin. P.M. chasis, loin. x bia., fitted with Goodman 81π. P.M. chassin,
and volume contrul, low impedance, originally $£ 176$. and volume control, low impedance, originally $£ 3176$. Chbinets are glightly marked, reduced to Eb . TEST EQUIPMENT.
Universal Avo Minor, 22 ranges, $£ 8 / 10 /$-. Taylor 120 A Junior AC/DC, 21 ranges, $£ 8 / 10$ T- Taylur 90A 1,000 ohms/volt AC/DC, 40 ranges, E15, 15 Walmall Model $846,2,000$ ohms per volt with lus ohms range, $£ 14 / 6 / 8$. G.E.O. " Selectest" AC/DC, 1,000 ohms per voit, £21. Hunts Crpuctty and Resiatance 50 ohms to 5 meg. Insulation teri. $818 / 18$. Muliard Capacity rind Registance bridge, Inm. 1 fot 10 mid and 10 ohms- 10 merohm power factor, e15/15B.P.L. SIGNAL GENERATORS.

Frequency Ranges, 100-250, $250-650,650-1$, cou Frequency Ranges, $100-250,250-650,650-1, E 00$
kc / s. $1.6-4.5,4.5-12$, and $12-30 \mathrm{mc} / \mathrm{s}$. Accuracy $\mathrm{kc} / \mathrm{a} .1 .6-4.5,4.5-12$, and $12-30 \mathrm{me} / \mathrm{s}$. Accuracy
of calibration 1%. Internal molulation iou cycles, 6 step nulitiplier and attenuator. £21. A.C. Sfulng $200 / 250$ v. or $105 / 115$ v. 50,60 cycles, also a infited quantity of Tavlor 65B Signal Generaturs $200 / 250$ v. $£ 1510 /$-, Fur orders ulaced imniedlately VALVE TESTERS
Taylor $47 \mathrm{~A} / 8$ latest model covering teats on all moder vaives. Incornoratea also AC/DC multi-ramge meter giving: A.O. and D.C. volts, $3,15,150,300$ and 600 D.O. M.A. 0.6, 6ma, 30, 150, 1.6 amp

Ohm Rankes. $0.5-1,000$ ohma, $50-100.000$ olmme with interanl latteries, $500-1$ meg, $5.600-10 \mathrm{meg}$ with external batterien. $\mathbf{£ 2 3 / 1 0 / 0 . ~ C o m p l e t e ~ w i t h ~}$ Instruction booklet.
TRIX AMPLIFIERS
Model TP633B, 30 wilts, A.C. mains $200 / 250 \mathrm{r}$, low and high impedance outputa and fitted with Garrard gram unit, incorporating auto stop magnetic plek-up, £59/10/-. Sedel TP633B (R.C.) us above hut fitted u"ith Garmard 8 record attomatic changer, $£ 735 \%$.
Please aend your orders and enjuirien for our immeritate attention. We despatch goods wherever possible the day we receive your order. These are securely parked against danage. We regret we cannot send thene items C.O.D., owing to the weight, but shall be pleased to rend against C.W.O Please include extra for pustage at d packing.

VALLANCE'S

144 BRIGGATE, LEEDS, 1

Dingied by enkineers or enaineers. the Solon Electrio Soldering Iron gives neater. cleaner, mote meieat work in less tlme The heating element is rixht inside the hit, giving constant heat at the point - where you want it. 'All internal oon sections boused at ead of handle. away from heat and onsy to get at Complete with 6ft. of Renley 3 -oore Hexible. Made for the following atandard -oltages :-200/220. 230/250.

Made in Empland

\uparrow r. HENLEY'S TELEGRAPH WORKS CO. LTD
61/53, hatton garden, london. e.c. 1

SURPLUS new boxed valves, $\mathrm{P} \times 25,33 /$ CRT, ECR $30,30 /--28$, Cresthill Ave., Grays. WOR sale, gin television CRT, Mazda CRM91 2nd hand in sealed makers cartous, scanning and deflection coil assemblies, $£ 2 / 10$; rubber masks, 15/--A. Gordon Galloway \& Co., 120a. Myddleton Fid.. Bowes Park, London, N.22. Bowes Park 3472. DYNAMOS, MOTORS, ETC.

$\mathbf{R}^{\text {UNBAKEN charger, } 72 \text { cells max, as new; }}$ R OTARY converter, 220 D.C. $/ 240$ A.C., perR fect condition, s12/10; transformer 110 A.C./ 230 A.C. $50 /--E l l a m, 103$, Torriano Avenue Kentish Town. (2) for sale, one 100 R watt, one 600 watt, both good condition: Best offer over 210 and 215 respec., to RanA LL types of rotary converters, electric 1 motors, battery chargers, petrol-electric | Haverator sets, etc.-WARD, Suffolk. Haverhil! 201. |
| :--- |
| 4677 | H.D.C. rotary convertor in silence cabinet a.c., 200 w , suitable for radio, gram. or television, $£ 10$, also M. L. rotary convertor, 230 s

d.c. to 500 v d.c., 200 mA , £7/10. Mactin.
 GRAMOPHONE AND SOUNO EQUIPMENT S.T.C. 4021 microphone, brand new, in plush W Loor model record player, ample record E15.-Strange, 16, Carnarvon R.d., Lerton R [7276
RECORDING machines, recording amplifiers, styli trailer needles, all recording accessor es.Bristol \& West Recording Service, 79. Old Market 8 i. Bristol.
INDUCTION motor with Rothermel Senior tion monnted, \&5; also B.T.I. needle armature n.u., less bobbin. £1--88, Mysore Rd. S.W.11. Bat. 6382 .
[7298
P.M
A RMSTRONG EXP83. 12in Goodman P.M. speaker, H.M.V. playing desk, all postwar models in perfect condition; £35.- A T'el. Bay. 0011, after 6 p.m. Gardens. 17207 Coils for W.W. tone control and filter cirfidelity, mic. line and output transformers: s.a.e. full list.-R. Clark. 30, Langland Cres
cent, Stanmore, Middx. Wor. 5321 . cent, EW radiogram cabinets in beautifully finished walnut, motor board size 3 zin by 17 in , sold either singly or in quantities to
holders of timber licences.-Apply L. Marcus, holders of timber licences.-Apply L. Marcus, Cle. 2462 .
 Amplifier, 2 microphones, crystal and mag. netic, ear phones, crystal adaptor, portable gramophone, 6v accs., etc., all nerfect working order; price £100.-A
St. Annes-on-Sea Lancs.
PORTABLE recording equipment: MS.S recording machine, 20 watt amplifier new, from stock: Blank discs, cutting needles. trailer needles, microphones, lightweight pickups, matching transiormers, speakers, trate enquiries invited.-Sound Discs plies). Ltd.. 83a. 13old St.. Livernool.
(Sup $19{ }^{47}$ quality record reproducers, amplifier ups, speakers, micrograms, players, etc. prices in the trade; s.a.e. for detailed list; special this month, Universal amplifiers, 12 watt, 10 mns ; 15 watt, $£ 14 / 10-\rightarrow$ Radio Un limited, 16 , Carnarvon Rd., Leyion. F. 10. TVECHNIFON, Ltd.. manufacturers of direct Precision built traserse gear complete with Precision class quality cubling head, $£ 15 / 15$: de fivery 3 wks.: s-sided 12 in blank dises still available, $3 /$. each; for all lightweight nick tups nising push in stylus now available, $9 / 2$ inc. P.T. postage and packing extra...'Technifon, Ltd. 99. Belgrave Rd.. London,
NEW MAINS EQUIPMENT

MAINS transformers, $750,0-350,200 \mathrm{ma}$. $4 v$ and 6.3 v L.T., 230 v input, $65 / 350 \mathrm{C}$ 350. 100 ma , 5 v C.T. and 6.3 y L.T 230 y in put, 27/6; alminium sheet. polished haif hard 22 gauge 1/4, 18 gallge $2 / .16$ gauge $3 /$ postage extra; transmitter and amplifier rachs built to your requirements; enquiries, and
 Hepworth's Arcade, Hull.

TRANSMITTING EQUIPMENT
FOR sale, late G5QI tansmitter, complete 3 within distance; see it; price 240 -Coombes.
"Faraway." Otterton, Devon

ELECTRADIX
 Stocktaking HARGAINS! !

We offer below some special stocktaking bargains at greatly reduced prices for this month only.
HEADPHONES. Ex-G.P.O. single L.R. Receiver type. S.G.B., with headband and cord, lightweight with bakelite case and cap, 5/- each or 50/- per dozen.
BATTERY superseder. H.T. D.C./D.C. for radio receivers, 6 -volt input, 110 v . $15 \mathrm{~m} . \mathrm{a}$. output, 12 volts input, $230 \mathrm{v} .30 \mathrm{~m} . \mathrm{a}$. output, ball bearings,

reduced to 55/-

D.C. FANS. 110 -volt Oscillator type, on table at cost
TELEPHONES. G.P.O. wall type Telephone constructor's parts with wiring diagram. comprising cabinet with magneto bell, magneto hand generator, bracket mike, transformer and condenser, switch hook and contacts. single receiver, old price $30 /$ each, or 50/- pair. Special offer for this month, $35 /$ per pair.
BUZZERS. The Tiny Townsend high note W/M Buzzer, the smallest Buzzer made ; all in good condition. 5/- each.
MICROPHONES. Hand mikes in moulded bakelite case, latest model G.P.O. inset, 4/6. Tannoy hand mike, as illustrated, multi-cell carbon type, metal case with neat switch in handle for sports meetings and announcers, reduced, $\mathrm{t} / 6$. G.P.O microphone insets, $2 / 6$
SEND-RECEIVE Hand-com All-metal field type, the famous No. 16 Govt. pattern as used
 field telephones. mike and ear- piece with damaged finger switch, reduced to piece with damaged finger switch, reduced to 5 - each, no cord
Cord, 5 ft. long, $2 / 6$.
THREE 5FT. Fluorescent Tubes only, each trough. Can be seen at our Battersea Showroom, they are a callers bargain only

INDUCTOR ALTERNATORS. 400 watts, beautifully made to Government specification, totally enclosed single or 3 -phase 50 cycle 230 volts 4 -pole, ball bearings speed 2,800 r.p.m. need MOTORS. D.C. Fan Motors, 110 and 220 volts. large bulkhead type, 35/-. Small universal A.C./D.C. $1 / 20 \mathrm{~h} . \mathrm{p}$. motors for sewing machine conversion, 230 volts. 8,000 r.p.m., with flange. flat enclosed type, 44 . I/SOth h.p., 3,000 r.p.m. universal metors, 230 volts, $£ 3 / 10 / \mathrm{j}, 1 / 27 \mathrm{th}$ h.p. Universal motors, 230 volts, 4,000 r.p.m., with 4-hole base, $£ 3 / 15 /-$. 110 -volt D.C. shunt wound motor K.8.B., protected type, 1/100 h.p., 2,000 r.p.m., with 20/1 reduction gear, mounted on C.I. base, 30%.
SPARK CO
 8 in . coil on base, $£ 18 / 10 /$: ; both for 12 -volt D.C. battery operation. Mercury Interrupter, 6/12-volt coil, $25 /$.
MAGNETS. D.C. Electric magnets, weight 10 oz., lift on 2 volts, if lb., 4 volts $3 \mathrm{lb} ., 6$ volts 4 lb ., new surplus, 7/6 each. Permanent powerful flat bar magnets, 2 gin. x lin. \times fin., drilled 2 holes each end, for any pole pieces, 2/- pair. A.C./D.C.
mains magnets, 2-pole, 220 volts, 7/6. The mains magnets, 2-pole, Alni perm steel disc hin. dia., sin. thick, with inin. centre hole, $3 / 6$ hin. dia., lin. thick, with if in. centre hole, Send each. Large stock of horsent "W."

SWITCHES.

key panel type 8 -pole
C.O. flush fitting, $5 /-$
Yaxley 3-pole 3-way,
$3 / 6 ;$ 8-pole I-way. $3 / 6$.
D.P.C.O. toggle switch
250 v. I amp., flush panel

250 v. I amp., flush panel, 3/3, 8-way Lucas switch box. 3/6 ; 6-way, 3-

ELECTRADIX RADIO 214, QUEENSTOWN ROAD, LONDON, S.W.

1TRANSMITTERS T33 and No. 9, 2,000v power units H.R.C.8 and Eddystones at less than tenth of component values.-24, Kings College Rd. N.W.3. Primirose 4806. GOUTHERN RADIO'S Wireless Bargains
LATEST Radio Publications: Radio Valve Manual, equivalent and alternative American and British types with all data, $3 / 6$; Radio Circuits, fully illustrated, receivers, power packs, etc.,
circuits, $2 /-$ Amplifiers, fully
descriptive Manual, 2/-; Short Wave Handbook, $2 /-$ Manual of Direct Dise Recording, 2/-: Test
Gear Construction Manual, 1/6; Radio Pocket Book formulas, tables, colour code, etc. $1 /-\frac{1}{2}$ Ten Hows for Radio Constructors, $1 / ;$ Bulgin Radio Service Manual. 2/6; Raxio Construc tors Manual, $3 /-$: Radio Resistor Chart colour cocles at a flick, $1 /=$ Radio Reference Hand book. cloth bound, comprehensive and up-10 date; Covering all Branches of Radio, 12/6 American Service Manuals, Sparton-Emerson, Crosley-Belmont (Parts 1 and 2). StewartWarner $12 / 6$ per volume. Postage extra on all publications
YAXLEY type rotary switches, Il-way, 5/-; resiances, $20 /-$ per 100 ; permanent crystal detectors, $2 / 6$ 3/6; Cutlin Harmer rheostats 30 ohms and 3/6; Cutler Harmer rheostats, Morse keys 10 ohms, 4/6; ex-Goverament Mozen); ex-Govbrand new, $1 / 6$ each (15/-per dozen), ex (a) ernment buzzers, brand new, $1 / 6$ each wil2 per dozen); Westectors, type $1 /$ each ($10 /$ - per dozen): Lutbra adjustic hole cutters for use on metal, wood, plastics. etc.: 5 / each
LA'TEST ex-Government purchase: Miniature communication receiver (M.C.R.I.), A.C.D.C., complete with power pack phones, aerial, etc. for use on all voltages 20 to 3,000 metres, 5 valves, brand new in original cartons, $£ 10 / 10$. carriage and packing 5/6 extra: all good advertised are postage extra. SOUTHERN RADIO SUPPL Y Co., 46, Lisle [6981 CIRCUITS and soil packs land other com Circonents)
DORSET superhets, 3 wave $5 v$ a.c. or a.c.d.c., 4v all dry battery, manuscripts 5/- each; the best and most compremstructions on the market; gentune 5/worth of information; theoretical sheet only of any above circuits and price list $21 / 2 d$. each. COIL packs-3-wave, set tested, guaravteed. cach, with circuit; please state it a.c. a a.c.-d.c. $19-49 \mathrm{~m} \quad 200-550 \mathrm{~m}, \quad 1,000-2.000 \mathrm{~m})$. Write Weldon Radio Accessories, Lid.. Swanage. FFFERS, 168 Belling Lee plugs and sockets, NEW coil-winding machine: E30; s.ite.. Southampton ELVERSAL ELETRONIC PRODUCTS UNIVERSAL ELECTRONE High St., Lon don, W. 1 Tel. No. Wel. 4058.
MINIATURE coil packs, $41 / 2 \mathrm{in} \times 23 / 1 n \times 2 \mathrm{in}$ iron cored coils, highly efficient. two types, 1 long, medium and shor wivern 39/6; Weymouth short waves, wiplete with circuit. $36 / 6$. SLow motion gearbox drives, a precision built SLOW motion gearbox 80-1. $15 / 6$: " P " type job, 2 ratios, $9-1$ and $80-1$.
coils, full range at not satisfied with the perR1155: I formance of your set let us convert it into al eflicient communical department dealing excluhave now a special depard can offer quick service. Quality amplifiers a speciality. Trans MANy new items for the serviceman and M amateur constructor appear in our new ists.-Free on request from Frith Radiocris2 Ltd., Leicester.
Ltd.jLeicester Coil holders, valveholders, small parts; 3d. stamp for innstrated 10/--Argenta (E), 40, Harrogate Ra.. E.9. CLYDESDALE for bargainsend now for latest ists; recelvers, amplifiers, loud hailers l.F.r.july low prices. remarkably low prices. Co., Ltd., 2, Bridge St., Glasgow. C.5. .valve A.C. TRF, M and 13 AsiC kit for including mains transformer smoothing, 6 in loudspeaker, polished oak cabi. net $12 \mathrm{in} \times 9 \mathrm{in} \times 7 \mathrm{in}$, coils, 2 -gang condenser with TIRANSFORMERS for every purpose, highest TTRANSFORMERS for every purpose, highest immed. delivery: test gear trans. ior bridges, oscilloscopes, rave Verts Blackpool. 'l'el. 1250

Quadrant Works, Finchley Lane, Hendon, N.W. 4 Telephone : Hendon 3632/3230

LASKY'S RADIO
 MOVLNG THIS MONTE'S SPECIAL UFFLES first grade, 0-10 amps. (shunt can be removed). Boxed. New and unused. Prbue 12,6 each.
 EX-AM. PRESS BUTTON CONTROL BOXES, new and unused. Consisting of 5-way press button anit, 4 -pole 3 -way tran/rec swith indicators and 2 -pin jlug and socket. Price $8 / 6$ each. SOLID DIAI
 SOLID DIALECTRIC, VARIABLE CONDENSERS, YAXLEY TYPE SWI $2 / 11$ each.
 YAXLEY TYPE SWITCHES, i-pole, 2 -way, 2 -bank.
 Price $2+6$ each. YAXLEY TYPE
 YAEIEY TYPE SWITCHES, 2-pole, 5 -way midget
 P.M. MOVING COIL SPEAKERS; 3 obm. volce coil, less transformer. $0^{\prime \prime}, 19 /-; 8^{\prime \prime}, 21 /=$ (8^{*} with
 tif" 216 (61" with O'T
 ENERGISED MOVING COIL SPEAKERS
 $5^{* \prime}$ with trans., 1,000 ohrus. fielu, 3 ohm, , V.U., $29 / 6$. *', less trans., 1,500 ohmm, teld, 3 ohm., v.O., $29 / 6$. 10°, with trans., 6,000 ohmas, fled, 3 ohum., V.C., $39 / 6$. REAL MIDGET 2-QANG CONDENSERS, . 0005 mtd . ceramic Insulation and trimmers, duetprool trans parent Perspex cover. size \& Lemgih $2^{\prime \prime} \times$ depth $2^{\prime \prime} \times$ parent Perspex cover. Size i Leagth $2^{\prime \prime} x$ depth $2^{\prime \prime} x$ Width 1f", t"spindle, Price 146 each.
 MEDIUM AND LONG WAVE T.R.F. COMS, $A E$ and Osio. high gain, with reaction. $8 / 6$ per matched patr, circuit included.
 6 and 12 VOLT VIBRATORS, 4 -pla UX base, 96 each. Red Indicator lamp holders if.E.B. panel mounting 1/6 each,
 BFO AND I.F. UNITS as previously adver theed.
 ELECTROLYTIC CONDENSERS
 $8-8 \mathrm{mid} ., 5 / 6 ; 8 \mathrm{mfd}, 4 / ; 4 \mathrm{mid} ., 2 / 11.500$ volta working. T.O.O. Pico-Paek, 20 mdd. 12 V.w., $2 / 6$ 10 mid. 25 V.w., 2/6. Tubular bian, 50 mid. ig $2 /=; 25 \mathrm{~m} / \mathrm{d} .25 \mathrm{v} . \mathrm{w} ., 1 / 9 ; 250 \mathrm{mfd} .12$ v.w. 26 Tubular cardboard, 8 mid. 150 v.w.. $1 / 11$; 15 mfd. 250 च.w., $3 / 6 ; 16$ mfd. 450 v.w., $4 / 9 ; 8 \mathrm{mfd} .450$ च.w. 4, 6,000
 6,000 RADIO VALVES OF ALL TYPES, AT OFFICIAL IIST PRICES.
 We have space for only a fow items from our extensive stocks. Send 1d. for our current list and briletin. Terms, Pro Forma, C.O.D., or cash with orier (no C.O.D under £1), Orders over $£ 5$ post free. All goods covered by our uncit.
 LASKY'S RADIO
 370, Harrow Road, Paddington, W. 9
 (Opp. Padidintion Hoapital)
 Telephone: Cunningham 1979

RADIO CLEARANCE, Ltd, 27, Totteaham C. Ct. Rd., W.1. Mus. 9188. U.H.F. receivers. ex-R.A.F. type 1481, range $66.86 \mathrm{mc} / \mathrm{s}, 10,6.3 \mathrm{v}$ valves, sequence, $\mathrm{R} . \mathrm{F}$ (VR65), mixer (VR65), ose (VR66), 3 I.F.s (VR53s), b.f.o (VR53), det. and a.v.c. (VR54 double diode), A.F. (VR57), ontput (VR67) beautiful $0-100$ 6in s.m. dial, tuning neter, R.F. and L.F. gain controls, a.v.c./man/b.io. switch, I.F. $12 \mathrm{mc} / \mathrm{s}$, jack sockets for mon. and line outputs, size $19 \mathrm{in} \times 101 / 2 \mathrm{in} \times 101 / 2 \mathrm{in}$ (fits standard 19 in rack), ideal for conversion to cover 5 metres, etc., requires power pack 250 and 6.3 v , all brand new. supplied complete with all valves, in original wooden cases with hinged lids (1ft 10inxlft $4 i n \times 1 \mathrm{ft}$ lin); price finged
MAINS trans, outputs 3ky 30ma (5kp no load), 300 y 250 ma , $4 \mathrm{v} 20 \mathrm{a}, 6.3 \mathrm{v} 4.2 \mathrm{a}, 4 \mathrm{v} 1.2 \mathrm{a}$, for c.r.t., 3 valveholders for rects. mounted and wired, ready for use, primary $230 \mathrm{v} 50 \mathrm{c} / \mathrm{s}$, 30/-; heavy duty smoothing chokes, 400 ma 250, $21 /-;$ smoothing chokes 201 H 80ma 300』, 12/6; p.m. speakers, all well-known makes, $21 / 2 \mathrm{in}, 25 /=; 5 \mathrm{n}, 25 /-; 8 \mathrm{in}, 25 /-8 \mathrm{in}$ with trans, $27 / 6 ; 10 i n$ with trans. $42 / 6$; superhet coils M.W. ae, M. W. osc, L. W. ae, L. W. osc, former size $1 / 2 \mathrm{in} \times 1 / 4 \mathrm{in}, 2 / 6$ each:
iron-cored $465 \mathrm{kc} / \mathrm{s}$ trap, $2 / 9$; set of 4 coils and trap, $11 / 6$. V.C. with switch, $5 \mathrm{k}, 10 \mathrm{k}$, $25 \mathrm{k}, 50 \mathrm{k}, 100 \mathrm{k} .250 \mathrm{k}, 500 \mathrm{k}, 1 \mathrm{~m}, 5 / 3$; V.C. less S.W. carb, $20 \mathrm{k}, 30 \mathrm{k}, 50 \mathrm{k}$. $100 \mathrm{k}, 500 \mathrm{k}, 1 \mathrm{~m}$, 2/6; double $1 \mathrm{~m}, 4 /-;$ min carb less S. W., 1 k, $20 \mathrm{k}, 100 \mathrm{k}, 200 \mathrm{k}, 500 \mathrm{k}, 2 /-;, \mathrm{C}$, wire-wound
$30 \Omega, 150 \Omega, 200 \Omega 500 \Omega, 1 \mathrm{k}, 2 \mathrm{k}, 5 \mathrm{k}, 10 \mathrm{k}, 20 \mathrm{k}$. $50 \mathrm{k}, 2 / 6$; all 3 w type. Electrolytics, 8 ndi 450 v 3/3; $20 \mathrm{mf} 50 \mathrm{v} 2 /, 50 \mathrm{mf} 12 \mathrm{v} 1 / 9$; Manshrige conds., $1 \mathrm{mf} 350 \mathrm{v} 9 \mathrm{~g}, 1 \mathrm{mf} 1,000 \mathrm{v} 1 / 3$,
$2 \mathrm{mf} 300 \mathrm{v} 1 /-, 4 \mathrm{mf} 600 \mathrm{v} 4 / 6,4 \mathrm{mf} 1,500,5 /-$ all wkg. switches, $1 p 3 w 1 / 9,1 p 9 w 2 / 6$. 1 p 6 w 2b $3 /=2 \mathrm{p} 4 \mathrm{w} 2 / 9,2 \mathrm{p} 5 \mathrm{~s} 2 \mathrm{~b} 3 / 6$, 2 p 5 w 3b short spindle $2 / 9,4 \mathrm{p} 2 \mathrm{w}$ short spindle 1/9, 1p 9w 3b 4/-; tubular conds. $\begin{array}{llllll}.001-2-5 & 6 d, .01-2-4-5 & 6 d, 1 & 350 \mathrm{v} \\ \text { conds. } & .0001-3-5 & 4 d & 001-2-4-5 & 5 d & 01 \\ \text { Gd; }\end{array}$ conds., silver micas, most sizes, 6-6,000nf $6 d$. ceramics, $2,10,20,25,50,100 \mathrm{pf}, 6 \mathrm{~d}$; resistors. $1 / 4 \mathrm{w}, 3 \mathrm{~d}, 1 / 2 \mathrm{w}, 4 \mathrm{~d}, 1 \mathrm{w}, 6 \mathrm{~d}, 2 \mathrm{w} 10 \mathrm{~d}, 3 \mathrm{w} 1 / 3$, most values in stock; 3 w wire-wound, $5 \Omega, 45 \Omega$, $470 \Omega 3.9 \mathrm{k}, 6.8 \mathrm{k}, 47 \mathrm{k}, 1 / \mathrm{F}, 10 \mathrm{w}, 50 \Omega, 250 \Omega$. $500 \Omega, 1 \mathrm{k}, 1,200 \Omega, 1 / 6 ; 20 \mathrm{w}$ with clips, 1202, $200 \Omega, 2 \mathrm{k}, 8 \mathrm{k}, 2 /-; 25 \mathrm{w}, 350 \Omega, 5 \mathrm{k}, 2 / 6 ; 40 \mathrm{w}$
14 k tapped at $2 \mathrm{k}, 3 /-;$ bakerlized paper tub, 14 k tapped at $2 \mathrm{k}, 3 /-;$ bakerlized paper tub;
$.17250 \mathrm{v} 3 \mathrm{~d}, .1600 \mathrm{v} 6 \mathrm{~d}, 100 \mathrm{mi} 12 \mathrm{v}$ elect. $1 /$; mains droppers, 2 sliders, $2 a 3 / 6$ ($1,000 \Omega$),
.3 , $800 \Omega 4 /-;$.A.F. chokes, $1 /-$ ceramic .3a $800 \Omega 4 /-;$ U.ALF. chokes, $1 /-;$ ceramic trimmers, $1 / 15 \mathrm{pf}, 3 / 50 \mathrm{pf}, 9 \mathrm{~d}$; air-spaced variablo, $30 p \mathrm{f}, 8 / 4 \mathrm{~m}$ spindle, $1 / \%$ padders, 150 pf $750 / 1,250 \mathrm{pf}, 1 /$ - valveholders, 4-pin Prit Pax 1d, Amphemol, 4PUX, $5 P \mathrm{PXX}$, 5P. Brit. Mazda Oct. 6d, Int Oct. 8d, porcelain 7 P Brit. 8d, E.F. 50, etc., Pax 6d, Micalex 1/ceramic $1 / 6$; orders under $10 /$ - to include postage.
[7372
COULPHONE RADIO, 58, Derby St.* Orms kirk, Lancs. The return of Post Mail
Order Service. Phone Ormskirk 496. C.o.d. or Order Service. Phone Ormskirk 496. C.o.d. or
c.w.o. Post free over 5/ New goods only. C.w.o. Post free over 5/\%. New goods only.
All goods previously adverkised still available. MAINS Transiormers: Primaries 200/30/50, 4 or 6.3 and 5 v L.T.'s, $300 \mathrm{~F} 60 \mathrm{~mA}, 23 / 6 ; 350 \mathrm{v}$ $100 \mathrm{~mA}, 28 / 6 ; 450 \mathrm{v}, 200 \mathrm{~mA}, 45 /-1,250-1,000-$ $750-0-750-1,000-1,250 \mathrm{v} 300 \mathrm{~mA}$ (no L.'''s) 92/6; filament, $4 v$ or $6.3 v 6 A, 16 / 6$. Filament Auto, $4 v$ to $6.3 v, 13 / 6$. smoothing chokes, $40 \mathrm{~mA}, 5 /-; 60 \mathrm{~mA}, 6 / 4 ; 90 \mathrm{~mA}, 7 /-$ $100 \mathrm{~mA}, 12 / 6 ; 200 \mathrm{~mA}, 21 / 6$. Peeder units with R.i'. stage, ${ }^{1} P{ }^{\prime \prime}$ type coils, R.F., F.C.I.F. D.D., ready for connection to audio amplifier Type B3, $88 / 15$; Weymouth Superthet Coil Panks, $36 / 6$. Midget I.F.I's, 18/9. 2 W.13 T.R.F coils with reaction, pr. $9 / 6$. 3 WH Superbet coils, pr. $11 / 6$. Rotary transformers, $6 v$ D.C. input, output $200 v 50 \mathrm{~mA}$, or with 12 v inpat 480 v 40 mA output, note price $15 / \mathrm{m}$ Muirhead precision reduction drives, ratho $55: 1$, 12/6. Bright aluminium chassis, 16 s.w.g., 4 sides, 3 in deep, $10 \mathrm{in} \times 6 \mathrm{in}$ and $10 \mathrm{in} \times 8 \mathrm{in}, 8,6$ $12 \mathrm{in} \times 9 \mathrm{in}, 9 / 6$; $14 \mathrm{in} \times 9 \mathrm{in}$ and $16 \mathrm{in} \times 8 \mathrm{n}$, 1016 20in \times in, $12 / 6$. Squares, $\sin \times 3 i n, 3 d$. Ben ing Lea
$4,000 \Omega$,
$17 / 6$. \quad Eliminators
s.Gith
whictes $\begin{array}{ll}\text { 4,000 } & \text { 17/6. Eliminators with trictrle } \\ \text { charger, } & \text { E4/5. Receiver constructional kits, }\end{array}$ canger, E4/5, Receiver constructional kits, 2WR TRF, 4 , A.O./D.C., E9: 3 WB superhet 5\% A.C./D.C ${ }^{4}$, \&12; A.C., \&12/10. Complete kits for Weymouth $5 v$ A.C. or A.C./D.C. re ceivers also arailable. Weymouth sub-assem lies for 6A8, 5/9; for 6Q7, 7/3; for 25A6, $5 /-1 / 2$ B. $\mathrm{for} 25 \mathrm{Y} 5,1 / 6$. 17 rane test set for $25 \mathrm{Y} 5,1 / 6$. B.P.L. 17 range test set e8/17/6. Avominor Universal. $88 / 10$, Vidor battery portables, 4% superhet. $217 / 9 / 3$ Vidor miniature pocket portable, $220 / 13$ Romac car radio (with R.F. stage), e31. Rothermel sapphire needles, $12 / 6$, Senior P.U., $56 / 3$. Connoisseur (with transformer), $78 / 8$. "P" type coils. $2 / 9 \quad 2 \mathrm{~g}$. 0.0005 tun. ing condensers W/T, $12 / 6$. Sencl $2 t / 2 d$. stamp

The illustration depicts our standard portable case. Finished with "New Wrinkle" Black Stoving enamel and supplied with chrome handles. The controls, with neat identification labels, are mounted on the recessed front panel. Cover and baseplate quickly removable.
These are in production :-
AC/I0 Home Gramo Player, $8 / 10$ wates
Concert P.P. Gram, $10 / 12$
AC/I8 Concert P.P.Gram, 10/12
AC/I8T As above, 2 inputs mixer-
AC/I8HG Gram and Mic., inputs 1200

AC/25 Popular P.A. Gram and
Popular P.A. Gram and
Mic., mixer-fader $23 / 25$ wates
AD/9 AC/DC Mic. and Gram.,
PAC/26 Combined Speaker and $£ 12 \quad 12 \quad 0$
Combined Speaker and
Mic., in case
14200
Technical data leaflets available on each; full catalogues on equipments, microphones, stands, speakers. Sixty specifications in our transformer range. Send 3 d . for this wealth of detail.
General Lamination Products Ltd.
294, Broadway, BEXLEYHEATH, KENT.
Phone: Bexleyheath 3021 .

Y(1)

can become

a first-class RADIO ENGINEER

We are specialists in HomeStudy Tuition in Radio, Television and Mathematics. Post coupon now for free booklet and learn how you can qualify for well-paid employment or profitable spare-time work.

T. \& C. RADIO COLLEGE North Road, Parkstone, Dorset

(Post in unsealed envelope, id. stamp)
Please send me free details of your HomeStudy Mathematics and Radio courses.

NAME.
ADDRESS
W.W.60
H.T. and L.T. rectifiers, charger kits, fluoresall charger kits guaranteed one year.
SELENIUM metal rectifiers, new small space SELENIUM metal rectiffers, new sman space type, 250 v of 60 ma for ac/dc receivers, take the place of valve rectifier, with circuit 9/6, post 5 d , ditto 120 v 20 ma or eliminators $7 / 3$,
ditto 120 v 60 ma for U.S.A. midgets $9 / 6$ post 5 d , product of famous manufacturer.
5d, product of famous manufacturer.
ELIMINA'TOR kit. 120 v 20 ma rectifier with transformer, 28 mfds condensers and trickle charger yectifier for 120 v 20 ma elimicator, $39 / 6$, post 10 d ; selenium L.T' rectifiers, wellknown make, new goods, with instruction sheet,
12 v
$1.5 \mathrm{amp} 10 / 6$ post $5 \mathrm{~d}, 12 \mathrm{v} 2 \mathrm{amp} 15 /-$ post $7 \mathrm{~d} .12 \mathrm{v} 3 \mathrm{amp} 18 / 6$ post $10 \mathrm{~d}, \mathrm{~d} 12 \mathrm{v} 4 \mathrm{amp}$ $25 /-12 \mathrm{v} 5 \mathrm{amp} 32 / 6$, also 12 v 6 amp heavy duty type with giant cooling gins, $38 / 6$ post 1/-; other types in stock including rectifiers for converting garage-type valve chargers to metal rectification; charger kits. 50 watt mains
translormer with 12 a 3 amp rectifier and balast bulb for 2 v to 12 v charger, no rheostat or anmeter needed, $48 / 6$ post $1 /-$ ditto woth 2 amp rectifier $39 / 6$ post 11 d , also fo
only $36 /-$; mains transformer 75 watt 4 amp rectifier and ballast bulb for heavy duty transformer, 150 watt with 5 amp hectifier, for $6 \mathrm{v}, 12 \mathrm{v}$ charger, high grade $0-6$ rectifier, ammeter included, $£ 4 / 14 / 6$, post $1 / 2$. CHARGER kits for small radio store, guaran teed one year, for one to 20 cells at gue amp coniprises 150 watt transiormer, selenjum rec to 1 to 20 cells at 2 amps, $£ 6 / 15$, transforme to 1 rectifier specially designed; ammeters flush mountng, reliable and accurate $0-6$ amp 15/-, post 6d; transformer and rectiffer for 2 y trickle clarger, $13 / 6$. posi 7d; fluoresrent
chokes. 80 watt, boxed and bitumen filled, 230 v chokes. 80 watt, boxed and bitumen fired, $1 / 2$. 19/AAMP tapped $200-250 \mathrm{y} 21 /$, postage $1 / 2$. CIIAMPION. 43
Tel. Lab. 4457.
COPPER wires, enamelled $1 / 1 \mathrm{lb}$ reels, 18 , $32 \mathrm{~g}, 2 / 3 ; 34,36 \mathrm{~g}, 2 / 6 ; 38.40 \mathrm{~g}, 2 / 9 ; 42 \mathrm{~g}$, $16 \mathrm{~g}, 1 \mathrm{lb} 5 / 6: 18 \mathrm{~g}, 11 \mathrm{~b} 7 /-; 19,20 \mathrm{~g}, 1 / \mathrm{lb} 4 /-;$ 22g, $1 / 1 \mathrm{~b}$ 2/6; 20 z reels, $24,26 \mathrm{~g}, ~ 1 / \mathrm{k} ; 28$ $42 \mathrm{~g}, ~ 2 / 6 ; 44,45 \mathrm{~g}, 10 \mathrm{z} 2 / \mathrm{C}$. Tinned copper, all gauges 18-42g available.
LAMINATED bakelite panels, $1 / 8 \mathrm{in}$ thick, 6 in $\times 4 \mathrm{in}, 1 / 6 ; 6 \mathrm{in} \times 6 \mathrm{in}, 2 /-; 8 \mathrm{in} \times 6 \mathrm{in}, 2 / 6: 10 \mathrm{in}$ $\times 6 \mathrm{in}, 3 /-10 \mathrm{in} \times 8 \mathrm{in}, 3 / 9 ; 12 \mathrm{in} \times 8 \mathrm{in}, \quad 4 / 6$ $2 / 2 / 6,3 /-$ Polished ebonite panels. $3 / 1 / \mathrm{nin}$ lhick, sizes as above. $1 /$ in thick, $2 /$ c, $6 / 6$, $5 /-, 6 / 9,8 / 9,10 /$ - respectively.
B.A. screws, gross nseful sizes, $2 / 6$; ditto nuts, $2 / 6 \mathrm{gr}$; assorted ${ }^{\text {gross }}$ screws and 2/6; brass washers, $1 / 6$ gr; assorted soldering tags, 2/- gr ; as sorted small eyelets and rivets, $1 / 3 \mathrm{gr}$; finest uality stranded and single push-back wire, ex-G.P O. hand telephone with microphone, ex-G.P.O. hand telephone with microphone, resistance earphone with switch, 2/6; all postage extra, trade supplied. London, E.4. [7217 SUPREME RADIO, 746b. Romford Rd. years, still the lead with component parts: 2 -gang condensers 9/6. 3 -gang $13 /$; ine cord, $60-70 \Omega$ fet, $20 /$ - doz. yds.; droppers, 2 or .3 , makers, long spindle with switch, 4/-; less switch, $3 /-; 10,000 \Omega$ wire-wound, less switch, $5 /-\mathrm{i}$ bias condensers, $50-12$ 1/9, 25-2.5 $1 / 9$, V.W., 4/6 doz.; 0.05,500 V.W., $4 / 6$ doz.
 mid, can. condensers, 500 V.W.. 36/: doz.; esistances, well-known maker, $1 / 2 \mathrm{w}, 1,000 \mathrm{n}$, $10,000 \Omega, 20,000 \Omega, 22.000 \Omega, 27,000 \Omega, 31,000 \Omega$, $100,000 \Omega$, $220.000 \Omega, 279,000 \Omega$, $560,000,1 \mathrm{meg}$, $11 / 2 \mathrm{meg}, 2 \mathrm{meg}$, a; asorted wire-wound 1 and $75,000 \Omega$, 2 w , handy sizes, $2 / 5 \mathrm{doz}$.; string drum drives, 3/-; sleeving, 3/- doz. yds., U.S.A. Octual and standard valye holders, $4 / 6$ doz. : screez caps, lead attached, standard size, 9\%- doz. Fvorine dials, $31 / 2 \mathrm{in} \times 4 \mathrm{in}$ all-wave, $1 / 6,6 \times 62 / 6 ;$ glass
dials, all-wave, 8 in $\times 5 \mathrm{in}, 3 / 6 ;$ midget ihakes, dials, all-wave, 8 in $\times 5$ in, $3 / 6$; midget chakes, 60 ma 6/-, 100 ma $10 /-$ midget speaker trans; peaker trans, pen, 5/9; 30w PP, 6,60c $\Omega=15 \Omega$. spea
$201-;$ solder, $1 / 1 / \mathrm{lb}$ a/-; P.B. wire, stranded $4 / 6$
100 ft . $1 /$ in black tape, $1 / 21 \mathrm{~b}, 2 /-;$ Weymonth coil 100 ft ; $1 / 2 \mathrm{in}$ black tape, $1 / 2 \mathrm{it}, 2 /-$; Weymonth coil CLEARANCE

when all sold.

TERMS, c.w.o.; no c.o.d.; send 6 d extra for postage and packing all orders under $£ 5$;

Armstrong

Model EXP83

AlL-WAVE 8-VaLVE SUPERHET CHASIS excorporating wave band control. Gram. switching. High quality push-pull output gives 10 watts audio. For I00-250 v. A. C. mains.

Price 14 gns. plus tax

Model UNI-83

 ALL-WAVE 8-VALVE SUPERHET CHASSIS
expansion, e.g. the $16-50 \mathrm{~m}$.

 band covers iust over 20 inches on the switching, all controls work on both radio and gram., high quality push-pull output giving 6 watts audio. For 200-250Provisional Price
14 gns. plus tox

* Model EXP 53 All-WAVE 7-STAGE RADIOGRAM CHASSIS
 This new radiogram chassis

 pansion on all bands. Volume and tone controls work on both Radio and Gram. $4\}$ watts R.C. coupled output Supplied complete with full size loudspeaker. This chassis has a lively performance, good quality reproduction, and represents exPrice with speaker $£ 13$

Owing to the National Emergency and the consequent loss of production we may be compelled to suspend this Model temporarily. We shall, however, do everything possible to avoid this.

Model AMP14 HIGH GRADE AMPLIFIER CHASSIS

Two inputs, bass compensating circuit, treble
boost control, 14 watts push-pull output preceded by 4 triodes.

13 gns.
Demonstration Sets are now available for interested callers to hear and illustrated technical specifications are now ready.

ARMSTRONG WIREEESS\& CO. LTED. WARLTERS ROAD, HOLLOWAY, LONDON, N. 7 Phone: NORth 3213

SOMETHING special for constructors and drives 3 in émbosed plate. $1 / 2$ in coupling. coloured knobs, fine strong jot, $5 / 3$ complete or $10 /$ matched pair, post free; also brand new 500 microamp ($1 / 2 \mathrm{~m} / \mathrm{a}$) M.C. 2 in type meters, $21 /-$ c. c.w.o.; send s.a.e. for interesting Radio \& Wholesale, 2, Elmdale Rd., Penn, Wolverhampton.
R OTARY transformers, brand new, ex-Govt E. stock, with $6 v$ input, output 200 y at 50 ma continuous, or 150 v at 80 ma up to three hours, with $12 v$ input, output 480 v at 40 ma continuous or 400 y at 80 ma up to three hours, size, length $71 / 2 \mathrm{in}$, height 3 in, weight $61 / 1 \mathrm{lb}$, ideal for car radios, mobile amplf-
fiers, etc orlainal price $87 / 7$, each $25 /-$; fiers, etc., original price £7/7, each 25/
midget m. wave, t.r.f. coils, high gain, 5/ m.l. wave, with reaction, circuit. 7/6; m.l wave, iron cored, adjustable cores, circuit, $10 / 6$ s.m.l. aer. and asc. coils, circuit, $10 / 6$; Wey mouth midget i.f.s. iron core, $465 \mathrm{kc} / \mathrm{s}_{\text {, }}$ per standard ditto, $2 \mathrm{mc} / \mathrm{s}$, each $3 / 6$; Weymouth all-way coil pack. 36/6; 2-gang condensers. 0.0005 mfd , $12 / 6$; ditto $0.0001 \mathrm{mid}, 7 / 6$; 'lins Tim ditto, fitted trimmers and perspex dust cover, 2 in $\times 1 / \frac{1 / 2 i n}{} \times 11 / 2 \mathrm{in}, 17 / 6$; speakers, minus tran. p.m., $5 \mathrm{in}, 21 /-;$ ditto p.m., $6 \mathrm{in}, 27 /$ $2 /-: 5 \times 51 / 2 \mathrm{in}, 2 / 6 ; 6 \times 5 \mathrm{in} \mathrm{m} . \mathrm{l}$. wave. $1 / 6$: motion drum drive, $3 /-$ epicycle drives $56 / 3$; Avo capacity bridee, £11/11; 61. 6 out put, p.p. trans, heavy duty, 6.600 ohuts, 15 ohms, $16 / 6$; Ferranti ditto, p.p. output
25/: : wreened rubber covered twin circul cable cable, $2 /$. yd; block condensers, 8 plus 8 mfl . $500 \mathrm{v}, 7 / 6 ; 24 \mathrm{plus} 24 \mathrm{mfd}, 300 \mathrm{v}, 8 /-; 8 \mathrm{mil}$.
$150 \mathrm{v}, 2 / 6: 50 \mathrm{mfd}, 12 \mathrm{v}, 2 /-; 25 \mathrm{mfd}, 25 \mathrm{v} .2 / 6:$ midget cabinets, cream and green, 13 iux 7 in $\times 6 \mathrm{in}, 40 /$ -
O. GRFWNLICK, Ltd., 34. Bancroft Rd., Cambridge Heath' Rd.. London, E.1. 'T'el.
Stepney Green 1334 . CITARIES BIRITAIN RADIO, Ltal., offers packs: Radtractive bargains this month. Coil packs: Radiomaser full circuit diasram rimmers, padders, and iull circuit ciagram, trims, pads and diagram, $22 / 6$ ea.; individual coils, midget iron cored wound with Litz wire h.f., aerial, and oscillator, short, medium and long bands, $2 / 6$ ea.; Varley mains transformers, $80 \mathrm{~m} . a .4$ and 6 V types, $30 /-$ Special offers: Moving coilmeters, $21 / 2 \mathrm{in}$ scale marked $0.3 v$, $0-1.5 \mathrm{v}, 0-60 \mathrm{~m} . \mathrm{a} ., 0.5,000 \mathrm{olims}$, will form basis for first class test meter, 25/-ea.; 5in speakers. less trans., $14 / 6$ ea.; ex-lk.A.F. indicator units, these are complete with a 6 in electrostatic cathode ray tube and a time-base using severa. EF50 and EB34 valves, £6/10 ea.; can only be sold to callers; moving coil mikes with metal grille undamaged. 5/. ea.
BARGAIN parcels: No 1, 36 assorted tubular condensers, 0.0011 mi , $10 / 6$; No. 2 assorted $12 / 6 / 2,{ }^{1 / 2}$ No. 3, special constructor's parcel containing resistors, condensers, valve holders, switches. tag bars, fixing strips, 4 and 6 b.a. nuts and bolts, grid clips, fuse holders and socket strips, a real bargain, dl only No. 4, power pack parcel, 28 mid condensers. mains dropper, choke and metal rectifier. 18. NEW purchase : Brand new ex-Govt. M.C. minet complete with power pack, 4 plug-in coils, phones, etc., $97-250$ volts a.c./Al.c. or from dry batteries, $\mathbf{X 7 / 1 9 / 6}$ (post 1/6); batteries for same $16 / 6$ each extra (post free) Send for our list glving details of our many goods T'ERMS Cash with order or c.o.d. over £1 send for latest list "W."-Charles Britain fison St., loon don, E.C.2. 'Tel. Bis. 2966 . W.W. bridge-conn. - damp-proof finish; list prices, makers ratings, 12 v la 11 -1.5a $14 /$, 2.5a $19 / 6$ $4 a \quad 23 /=5 a \quad 31$, 8 10a $37 / 9$, (last two pose $30 \mathrm{v} 5 \mathrm{a} 57 / 10,50 \mathrm{v} 5 \mathrm{a} 81 / 6,95 \mathrm{v} 5 \mathrm{a} 151 / 3$; phus carr. 1/3; transtormers, famous make $200-250 \mathrm{v}$, sec. tapped for $6-12 \mathrm{y}$ charger using 12v 5a rect., 48/, carr, $1 / 3$; $12 v, 8$-10a rect. $130 h \mathrm{~h} 3 \mathrm{a}, 5.50 \mathrm{hm} 5 \mathrm{a}, 22 / 6$ ea., post 8 d . ali values; steel charger cases, $14 \mathrm{in} \times 6 \mathrm{in} \times 5 \mathrm{in} \mathrm{h}$. v. Well made. vent, w. lid, bk. en. for up to w. hinged $\downarrow \mathrm{id}, 81 / 2$ in $\times 81 / 4$ in $\times 61 / 2$ in h., $7 / \cdot$, p.f (not new) ; technical queries welcome; s.a.e pse.; trade supp.; tor workshop or den, ready to sw on, $£ 5 / 18 / 9$ plus carr (see ready to sw. ${ }^{\text {Inallist," Sept., } 46 \text {). Pearce, 66. Gt. Percy }}$

Woodwork by Lockwood

We are Specialists in the Manufacture of high-class Precision Woodwork for the Radio and Electrical Trades and we shall be pleased to receive your enquiries for the fol-lowing:-

RADIO CABINETS instrument cases BAFFLES - HORNS
TRANSIT CASES
LABORATORY FURNITURE
FITMENTS, ETC.

Timber Licence Required

ackwouds
\& COMPANY
67, Lowlands Road, Harrow, Mdx. Phone: BYRon 3704

Be WISE

WE

APOLOGISE to those who have been waicling months for replies. Our post-war plans have been rustraced so far. Sorry'

VOIGT PATENTS LTD.

HILL \& CHURCHILL LTD BOOKSELLERS SWANAGE, DORSET

 Available from stock :Schelkunoff, 'Electromagnetic Waves' Terman, "Radio Engineering"Ghirardi, "Modern Radio Servicing ' Dahl, "Electric Circuits-Theory and Applications
"Radio Handbook," l0th edition, U.S.A.

Hudson, "An Incroduction to Elec tronics

$$
15 /-
$$

Cocking: " Television Receiving EquipSmith, " Radio Designers Handbook Brainard - "Ultra High Frequency Techniques

Postage Extra
We hove a lorge selection of English and American Books on RADIO and TELECOMMUNICATION.

COILS, midget adjustable iron-cored, aer. and coils, m., l ., wave aer. and $\mathrm{h} . \mathrm{f}$. ., $9 / 6$ pr.; i.f.
 high, $9 / 6$ ea.; all above coils with circuit miniature rotary switch, 4-pole, 3-way, 3 / 9 eatMonochord Radio, 235, Streatham Rd., S.W.16. A LIGNED INSTRRUMENTS SERVICES, 1 . COILPACK: A Ruperhet Leytonstone, E.11.-40 COIL PACK : A superhet coil pack with an H.F. stage. Uses 9 iron cored coils in a 16-50, 200500 and $800-2,000$ metres circuit for $465 \mathrm{hc} / \mathrm{s}$, 1.F; complete with circuit diagram, alignej and gain tested, this coil pack enables the amateur with no signal generator to construet lst class a!l-wave receiver; price £3/10. Circuit liagram only, $2 / 6$ post free.
30 COIL PACK SERIES: A famous series of precision made coil packs now too well known to need description. Superhet types: Model 30, 16-50, 200-550, 800-2,000, at 42/-; 30 N , 12-30, 30-75, 75-200, at 42/-; 30B, 16-50, 200 550 , at $301-; 30 \mathrm{C}, 200-550,800-2,000$, at $30 /-$; 308, 12-30, $30-75,200-550$, at 42/-0 TRF types: Model 30D, 16-50, 200-550, 800-2,000, at 35/-; 30E, 12-30, 30-75, 75-200, at 35/-; $30 \mathrm{~F}, \mathrm{I}^{16-50,200-550,}$ at 27/6; 30G, 200-550,
$800-2,000$. at $27 / 6$. Each is complete with 800-2,000. at 27/6. Each
circuit. Circuits only $2 / 6$.
HIGII " 0 " ${ }^{\text {cith }}$. Transformers: $465 \mathrm{kc} / \mathrm{s}$, iron cored, permeability tuned. For use with above superhet coil packs. Aligned and gain tested. Price $17 / 6$ per pair
TUNINT CONDENSERS: 2-gang matched to all our 30 coil pack series, price $15 /-$ - 3 -gang mateched to our 40 coil pack, price 17/6. These condensers ensure that correct alignment and waveband coverage is maintained. Many other intereating A.I.S. products available. Send stamp for new price lish. Terms: Cash with

order or C.O.D. No C.O.D. under £2. Over | order or C.O.D. No C.O.D. under £2. Over |
| :--- |
| $\begin{array}{l}\text { © } 5 \text { post free. }\end{array}$ |
| 7370 | CANGAMO synchronous motors, self-starting, 5 exceptionally good torque, rotor speed 200 rpm, $200-250$ v.a.c., 50 e , consumptink $2 \frac{1}{2}$, $2 \% \times 2 \mathrm{in}$, geared 1 rev. 60 min., can or reset to zero by iriction drive from front or back, shatt id movements for making electric clocks, time switches, etc., nickel plated finish; clocks, $22 / 6$ each; 12 to 1 dial trains to fit above $22 / 6$ each; 12 to 1 dial trains to fit above

spindle, per set $2 / 6$: as above, with Chamberlain \& Hookham synchronous motors (enclosel] type, 25/-; moving-oil headphones. P.M. energised by Alni nagnets, 45 ohms, Min coil, energised by Aln magnets, 45 ohms, $1 / \mathrm{in}$ coil,
ideal for mikes, miniature loudspeakers, etc., ideal for mikes, miniature loudspeakers, etc., flange. $6 / 6$ each.
flange. $6 / 6$ each.
15-AMP. mercury 8 witches, enclosed bakelite tubular cases, $21 / 2 \times 3 / 3$ in. fitted swivel saddle, connector block, etc. $5 / 6$ each; cash with order, post paid on all above goods: to callers only, a comprehensive stock of scientific instruments, meters, gears, relays, etc.
H. FR NKS Scientific Stores, 58 . H. FRANKS, Scientific Stores, 58, New Oxford St., London, W.C.1. Tel. Museum 9594. HENRY'S RADIO.-We specialise in small PO3, Wearite coils now in stock 31, PO2, PO3. Wearite coils now in stock, 3/- each, t.r.f. coils, m. and l., with reaction, and cirwith circuit, $9 / 6$ pr; valve cans, standard size, aluminium, 2/- each; vibrator unit, complete, 12 v input, 210 -volt, 70 ma output. an paralleled value, 45/-ea; vibrators, Mallory 6 v and $12 v, 4$-pin, $9 / 6$ each; electrolytics, $8 \times 8 \mathrm{mfd}, 500 \mathrm{v}$ wkg, $6 /-; 40 \mathrm{mfd}, 150 \mathrm{v}$. wkg $4 /-\mathrm{i}$ aluminium sheets, 18 gauge, $11 \mathrm{in} \times 9$ in idcal for chassis, etc., only $1 / 6$ each. Our new price list is now ready; cash with order for c.o.d over f1). trade supplied.

IENRYS RADIO, 5. Harrow Rd., Padding COMPLETE kit of parts tor $200-250 \mathrm{~L} 276$ COMPLETE kit of parts for $200-250 \mathrm{v}$ ac/dc including valves 6 K 7 , $6 \mathrm{~J} 7,25 \leqslant 5,25 \mathrm{~A}$, drilled aluminium chassis 10-5-15\%in, 5in p.m. speaker s.i. drive and $10-5$ ated coloured ivorine dia (station named), Weymouth coils and absolutely everything required to last nut, price, Including P.T. $56 / 14 / 6$; attractive polished wood (walnut) cabinet to suit, size $12 x_{1} 7-6 y / 2$, $30 / 6$ extra; polished wood cabinets available from $22 / 6$ each; chassis, 16 gauge aluminfum, $\quad 10-5-15$ in, undrilled $4 /$. drilled for 5 valves, etc., $5 /-$; trimmers, post age stamp type, $4-40 \mathrm{mmil}, 5$, doz; bias condensers, 25 rafd , $25 \mathrm{v}, 1 / 9$; Yaxley type switches. 4 -pole 3 -way double bank, 3/-; 4-pole 2 -way slngle bank, 2/9; 2 -pole 6 -way, $3 /-$; mains droppers, 0.3 amp , with feet and 3 sliders. 3/11; resincored solder, 4/. lb; condensers. fixed, $0.01 \mathrm{mfd}, 600 \mathrm{v}, 0.05 \mathrm{mdd} 500 \mathrm{v}, 0.1 \mathrm{mfi}$ 350v, $4 / 6$ doz; tuning coils, high gain T.R.F. AE and H.F. with reaction and circuit, $8 / 6$ pr.; all goods new and unused; lists 2!! s.a.e. all enquiries; terms c.w.o., otherwise c.o. ; postage extra.
E. POWELL, 19, I.idget Hill. Purisey. Leeds

Specialists in

HIGH POWER - HIGH QUALITY PUBIC ADDRESS sysitus avilifirs from 150 W to $1 k W$

W. Bryan Savage Ltd WESTMORELAND ROAD, LONDON, N.W. 9

Telephone: Colindale 7131

TRANSFORMERS \& COILS TO SPECIFICATION.

MANUFACTURED OR REWOUND IOHN FACTOR LTD.,
(Formerly Stanley Cattell Led.).
g-ll East Street, TORQUAY, Devon 'Phone: Torquay 2162.

SALFORD ELECTAICAL INSTRUMENTS LTD. PEE wonk
fono
HE GENERAL ELECTRIC Co. Ltd., of Enghend

G. A. RYAT.i., 65, Nightingale Lane, London.

 £1 please Postages extra on al! orders. Please write plainly. All new goods, unused, U.S.A. make 0.1 mf 500 v tubular screened condensers $5 / 6$ dozen; resistances, assortedbest makes, sizes from 100 ohm to 2 meg. including fifteen half-watt sizes, 40 for $5 /$ - our ussortment only; also 2 watt $150,000,220,000$ $470,000,820,000,43,000,31$-dazen; 33,000 olhn 3 wast, 3 dozen; 1,800 wire wound, $1 /-\frac{d o z e n ; ~ p a n e l s ~}{1 / 2 \mathrm{w}}$ resistances, $2 / 3$ screened 0.1 mf and switches, 9 way, single bank $2 / 3$, and double bank, 3 P, $3 w 2 / 3$; three bank $2 P$, $4 w$, with OCTAL plugs with metal caps and chassis type sockets, 3 2/6, with solder tags 3 3/U.S.A. 4-, $5-$ en-pin chassis
dozen to clear: vitreous resistances. 20 w 4,700 ohms, with clips, $2 /-; 1,000$ ohms less clips, $1 / 6 ; 500$ ohms, With cips,
wound heavy duty L.'T. droppers, eight ohms, on porcelain formers, standard length, two taps, adjustable, $2 / 3$: sliding resistances on stand, worm drive, 25 amps, 0.4 ohms, $7 / 6$
CONTROL boxes, uetal, with Yaxley type 2 bank 4 w 2 p switch, with ${ }^{2{ }^{1 /\{ } \text { in well finished }}$,
pointer knob, and on/off toggle, and DP DT toggle, size case $6 \times 3 \times 3$ approx., 5/- each small typo with fixing bracket containing 25 ohm $\mathbf{H F}$ choke, 0.0005 mica condenser 800 ohm resistance, size $3 \times 2 \times 11 / 2$ in approx., type switch, 5 w 2 P 3B well finished knob, internal toggle switch, three green indication lampholders with bulbs, one ditto, clear, with relay of 20,000 ohms, 1 B 2 M ceramic and spaced insulation: second relay of 3,000 ohme
 approx., with Yaxley trpe 2 b 3 p 3 w with small knob, red indication lampholder with bulb, resistance panel with 0.1 mf 500 v 280 ohm and two $25 \mathrm{mf}^{2} 50$ watectrolitics, two-way plug and jack. ditto single, one large plug, 4-way
type $101 / / 735$ full two yards twin screened type $101 / / 735$ full two yards twin screened
cable, full six yards t win rabiber cable, Paxolirn cable, full six yards twin ribier cable, Paxolir1 tion block, in flat metal case $8 \times 6 \times 2$ approx., $10 / 6$ each, perfect condition; Paxolin panels. quarter inch, $12 \times 12 \quad 7 / 6,12 \times 8 \quad 5 / 9, \quad 8 \times 8$
$3 / 9$; metal boxes, ideal for instrument cases. etc, with quarter inch Paxolin panels, size $81 / 2 \times 71 / 2 \times 31,2$ deep approx., four fixing lugs, four corner sockets for panel fixing, $6 / 9$ each complete: battery type ampllfiers, $2 v$, con-
tain four input, intervalve and output trans formers, for microphone amplification, com plete with triode coupled to QP21 type valve. slightly soiled, not guaranteed, 25/- each, in IR.A.F., new, in cartons, contain 5 w SP, 3 B ceramic switch. $15 \mathrm{RF}$. . type trimmers, in in amphenol valve holders. Ceramic coils easily detachable for rewinding. fixed tunintr. with good switch knob, $50 /$ each: heavy duty starters in bakelite cases, $5 /-$; new high resistance phones with low resistance mike, boxed.
with sponge earpads, plug type 10 II/10991 4 -way. $10 / 9$ set; ditto, second-hand, not guaranteed, $5 / 6$: the G.P. O. type mikes in phones and mike are easily detachable for separate use; test gaps with bulldog clip, $2 / 6$; high
speed on/off relays 1.000 ohms. $5 /-$; relays, small, 300 ohm on loff, about 20 ma, ceramic, small, 300 ohm on/olf, about 20 ma , ceramic,
$3 / 6$; rolume controls, 10.000 ohm, medium $3 / 6$; rolume controls, 10,000 ohm, medium
spindle, $1 / 6$: short spindle, $1 / 4 \mathrm{meg}$ and 1 HXX.GOVERNMENT stock,- $-7,500$ transmit rotary conwerters, de luxe slow motion dials, $12-240$ motors. amp- and voltmeters, at fraction of original cost; callers only-Alec 1bavis,
\&. Perry Sit., W.1. T EEDER innits incorporating Denco C.T. 2 (Q.155) wired and alignerl, F.C.H. 35 . F.F. 39 . guarantee; superlative performance; $61 / 2 \mathrm{in}$ sauare; price £9/9.
Dower MiFi amplifiers using voltage stabilised nower pack, continuously wariable treble and
base controls. P.X. 25 output using feed back; fold separately or complete with 6-band feeder; details upon application.
DENCO. Q.Max and Armstrong stockists Goodsell. transformer replacement bobbins luses r.i. chokes. superhet type, $2 /-:$ sectionalised all ranges, 3 ,- 3 -band coil a assemblies, $6 / 9$ each.-Electronic Services, Arwenack St., Fal-
mouth.

GALPINS

ELECTRICAL STORES

408, HIGH ST., LEWISHAM, LONDON, S.E.13. Telephone : Lee Green 0309. Near Lewisham Hospital.

TERMS : Cash with order. Regret no C.O.D.

 ELECTRIC LIGHT CHECK METERS K.W.H. type, for A.C. only. $200 / 250$ volt50 cycle , 1 phase, 5 amp . load, $12 / 6$ each: 10 amp $50 \mathrm{cycle}, 1$ phase, 5 amp load, $12 / 6$ each ; 10 amp .
$15 / \mathrm{F}$; $15 \mathrm{amp} .20 / \mathrm{m} 20 \mathrm{amp} .25 / \mathrm{m} ; 30 \mathrm{amp}$. $30 /-$; $50 \mathrm{amp} .40 \%$; $100 \mathrm{amp} .50 \%$. Carriage
EX-G.P.O. PRE-UNISELECTORS, 3 ohm automatic relay operating a 4 -way Yaxley switch. fitted with 2 concensers. $01,1+$ M.F., new, boxed, $5 /-$ each. G.P.O. Polarised Telegraph Sounders in new condition, $10 /$ each. G.P.O. Polarised 230 ohms, 10 - eazh, as
SHUNT WOUND D.C. 110 volt motors, 17/6 each, post 2 .
$17 / 6$ each, post 2 EVGCUMBE $2!i n$. METERS 0 to 5 volts A.C./D.C., incorporating Westing-
house Rectifier, $47 / 6$. Ditto, calibrated in house Rectifier, with. rectifier, $65 /$. Another
decibels $+3-10$, with reading $15-0-15 \mathrm{~m} / \mathrm{amps},. 35 / \mathrm{O}$. Ditto, $30-0.30$ $\mathrm{m} / \mathrm{amps} ., 35 / \mathrm{h}$. These meters are all first grade moving coil instrwments. TYPE GALVANO-
EX-G.P.O. VERTICAL TYPE GALVANOpost 1/-. Mallory 12 volt vibrators, new and unused, $7 / 6$ each. Electrolytic condensers, 80 mf 350 volt wkg., 5/5 each, post 9d
WESTON MOVING COIL METERS, edge type with knife edge pointers, $2 \$$ in. scale, all $2 \mathrm{~m} / \mathrm{a}$. F.S.D., 0 to $300 \mathrm{~m} / \mathrm{a} ., 30 / \mathrm{F} ; 0$ to 2 amps , $27 / 6 ; 0$ to 60 volts, $27 / 6 ; 0$ to 150 volts, $27 / 6$ ditto, 0 to 1 volt $1 \mathrm{~m} / \mathrm{a}$. 1,000 ohm per volt, 35 /. another 301 modal 0 to $3 \mathrm{~m} / \mathrm{a} ., 35 / \mathrm{F} ; 0$ to $50 \mathrm{~m} / \mathrm{a}$., $30 /-: 0 \mathrm{to} 200 \mathrm{~m} / \mathrm{a} ., 32 / 6$; another
0 to $50 \mathrm{~m} / \mathrm{a}, 27 / \mathrm{m} ; 0$ to 10 m a., $27 / 6$.
SMALL ELECTRIC MOTORS for A.C. O D.C., 80/100 volts, useful for sewing machines Pathe Cine's, etc, double ended shaft, $30 /$ each.
VOLTAGE CHANGER TRANSFORMERS
auto wound, fully guaranteed, immediate delivery all tapped 0 . $110,200,220,240$ volts, 250 watts 45/-; 350 watts, $55 /-$; 500 watts, $70 /-$; 1,000 watts, $65 / 15 / 0 ; 2,000$ watts, $£ 8 / 15 / 0$.
EX-GOVT. ROTARY CONVERTERS, input 12 to 18 volts D.C. at $3 \frac{1}{2}$ amps., output 450 volts $60 \mathrm{~m} / \mathrm{amps}$., fitted with automatic switching and smoothing, $32 / 6$ each, $2 / 6$ carriage. Also a few brush caps, at $2 \mathrm{p} / \mathrm{-}$ each, post $2 / 6$.
Ex-G.P.O. Parmanent Magnet Moving Coil Speakers (makers Tannoy), suitable for extension or small P.A. w.srk, fitted in wooden case, 9×9
$\times 7$ in., as new, $\boldsymbol{Z} / 6$ each, post $1 / 6$.
EX-R.A.F. OS:ILLATORS, complete as new, with valves, 4 'neon balancer, 2 barretters and output VT.60A., complete in
$\times 81$ in., price $57 / 6$ each, carr, paid.
$\times 8 j$ in. price $57 / 6$ each, carr, paid by well-known
MAINS TRANSFORMERS by makers. Input $200 / 250$ volts, output $450 / 0 / 450$ volts at $150 \mathrm{~m} / \mathrm{z}$., 6 v. 4 amps., 5 v .2 amps., $37 / 6$ cach, post $2 /-$ another, 230 volts input, 110 vol
EX-R.A.F. CATHODE RAY RECTIFIER UNITS, comprising of Transformers, High Voltage Condinnsers. Tube Holder, approx. 100 Condensers and Resistances, all mounted on
base board 23 к 11 inin., enclosed in metal case. base board $23 \times 11 \frac{1}{2}$ in., enclosed in
Weight 901 bs.; brice $65 /$, carriage 5
MAINS TRANSFORMERS by well-known makers, 80 volts input, $420 / 0 / 420 \mathrm{v}$. at $250 \mathrm{~m} / \mathrm{a}$., 6.3 v. 6 a., 5 v. 2 a., 4 v. 3 a., $15 /-$ each. Another $200 / 250$ voles input, $350 / 0 / 350 \mathrm{v}$. at $200 \mathrm{~m} / \mathrm{a}$,-
$6.3 \mathrm{v} .20 \mathrm{amps} ., 5 \mathrm{v} .3 \mathrm{amps}$,, weight $16 \mathrm{lbs} ., 45 \mathrm{l}$, carriage $2 / 6$.
EX-G.P.O. (U.S.A.) CONVERTORS, VIBRATOR trpe. $3 / 6$ volts D.C. input, 100,120 volts A.C. oulput, enclosed in metal carrying case $7 \times 6 \frac{1}{2} \times 5$ in. New and unused, $25 /-$ each,
VARIAC BALANCER TRANSFORMERS,

$1-6 \mathrm{~kW}$., $220,200 / 260$ volts 50 cycle, I phase,

FERRANTI MOVING COIL Oto $40 \mathrm{v} /$ meters.
2 in . scale, $5 \mathrm{~m} / \mathrm{a}$. F.S.D., new and unused, $22 / 6$ each : another $25 / 0 \mathrm{lach}$ /a., 2 in . scale. Makers
HEAVY DUTY CHOKES, WOUND with copper strip, make good 500 watt rewinds, new and unused, 176 , pose 2 covered P.V.C., varnished cotton, Idaglass, synthetic rubber etc., in coils of $144 y \mathrm{ds}$ and lyd lengths. 1 mm to 10 mm diameter.-John Walton \& Co. (Castleside), Ltd., Metalex
Works. Gt. Cambridge Rd., Enfield.
$[6916$ W AVE change switches,-We have surplus W to our requirements 1,000 wavechange switches, sintle and 2 -pole per wafer, 4 position; these switches can be made up to your own requirements, i.e., number of waiers, dis Radio between walers, etc. 28, Newton Rd Kingskerswell. Newton Abbot, Devon. $[7239$ KITS of radio receivers from $57 / 8$; 4- and semi-midget; our latest kit.-Wylwgn Star 1947 has connections for gramophone pick-up, ex tensions to loudspeaker A.V.C., 6 hours aver age time for constructing; full details, dia grams with each kit; c.w.o. or c.o.d.-lsher woods, Reme House, 81, Plungington Rd. EX.R.A.F. "Ilenlification Friend or Foe © receiving and transmitting units with 4 Straight mallard E.F.50, 3 television diodes and 2 double-triode ntains valves by Brimar; alsn 20 watts motor generator, 24 volt input, 480 volt $40 \mathrm{in.a}$. output, $50 /$ each, plus carriage such as carbon and w.w. resistors, components such as carbon and w.w. resistors, tubulat and condensers, magnetic relays and plus coils cal relays.-W. Harford, 128, Greengate, Sal ford, SELECT RADIO, 151, Ley St., Ilford, Essex D Tel. 111. 2685.-The right goods at the right price: 3 linecord, 60-70 $\frac{1}{}$ per ft. $19 /$ each; Mazda octal valve holders duty, $4 / 6$ doz; 8 mfl 500 V wire ends condensers, $36 /$ doz; $8+8 \mathrm{mfl} 500 \mathrm{~V}$ metal can, $5 / 3$ each; 465 wave coil packs, 6 pair each, midget if. speakers, $20 /$-each; all valves at B.o.T. prices sent s.a.e. for current list; cash post and' packing. post and packing

RADIO hams! S.E. district,

F. A. PORRI'I' can supply most of yon, requirements, no order too small or too large, every caller is offered our best; information on all amateur subjects gladly given: Denco pro $13 \& 27$ Wastdale IRd., Forest Hili, S.E. 23 COMPLETE radlar P.P.I. repeater, unised AMares © C.R. tubes: offers? Box 7606. Epping. Tel. 2163. TMME Recorders.-Write for particulars. Fimpire Works, IItudersheld. IRON dust cores.--Several patterns in large Downton \& Co., 89, High St., Epping. Tel. 2163. COMPLETE wireless station, ideal Field Buil (Huislip), Ltd., 42-46, Windmill Mill. Ruislip. Middlese
CIIASSIS and panels in aluminium, from 3/9 each; prompt delivery, any size plain Bence Lane, Darton. Barnsley. $[7209$ CIRCUIT diagrams (individual designs) to Order chassis assembled or adjusted by ont elect. mech. or radio-electronics.- Write to R. G. Voung, 3a, Bridges Rd.. Wimbledon. DERSPEX stockists have for sale wide range purposes, cut to any size and shape. Perspex cement and polishes.-S.a.e. for stock list to C. B. S.. 47 , Stoney Lane, Birminghan, 12. C ENUINE R.A.F. ncw precision pocket keepers, bargain offer. $\mathcal{E} 6 / 10$, Government price f8/10: Superliets, pre-war, beautiful press.button Supernets, prewar, all ineautiful purchase tax.-Cornshshire.'Tel. 3076. [722\% Rd., Nuneaton, Warwickshire, Tel 3076
W bers-Box 7439 .
$W_{\text {ANTED, good condition, "W. W. "' August }}$ M AGNAVOX " $66{ }^{\circ}$ and $" 55$ " speakers. W ANTED, V́arley permeability tune BP100: state cond. price,-B0x 7808 .
WTD., Olympic SS lor components.-Wardel $\mathbf{W}^{\text {TD. }}$ 63, Risbygate St. Bury St. Edmunds.
URG. reqd.: UY1, UY12 radio valve,-I.

DALY

 ELECTROLYTICS

Tube一size $2 \frac{1}{1} \times \mathbf{I}^{*}$

Can-size $41^{\prime \prime} \times 1$ ª' 2

Block-size $4 \mathrm{ft}^{\prime} \times \mathrm{x} \mathrm{s}^{*}$
Ihe DALY range covers all requirements Note-All Condensers bear the date made

DALY (CONDENSERS) LTD

Condenser Specialists for over 20 years West Lodge Works, The Green, Ealing, W5 Phone-Ealing 4841

THE AURI-PHONE

$\mathbf{W}^{\text {TDD., }}$, requency record, H.M.V., hypersenFERROCART ${ }^{\text {sitite }}$ with trans, ace, oscil. Box 7427 . Colvern-Waterman, 41, Ingleton Rd., N18. $W^{\text {ANTED, electric }}$ non-auto Non-ato.-9, Kimberley Gardens, New-castle-on-Tyne.

RADIO CORNER
(Proprietor, t. R. WILLIAMS)
138 GRAY'S INN RD., LONDON, W.C. 1

Terminus 7937

MAIL ORDER. Delivery by return. THE BANNER CHARGER. Type $1 / 1,1$ amp, ideal for Motorists, a really first-class job. Input 240 v A.C. Output 2,6 or $12 \vee$ D.C., at $£ 3$. Designed for the motorist who likes to keep his batteries in tiptop condition.
RADIO VALVE MANUAL, giving American and British Valve Equivalents and Daca. Price 3)6 Radio Constructors Manual. Price 3/-.
Radio Tuner Unit Manual. Price $2 / 6$.
Engineers and Electricians Handbook. Price 1/Cathode Ray Oscilliscope Manual. Price 2/-. Radio Reference Book. Price 12/6.
American Radio Valves. Types as under at controlled prices. 4525 GT , 5 Y 3 G , $\mid \mathrm{A} 5 \mathrm{GT}$, IC5GT, IT5GT, 80G, 35Z5, at $11 /$ each. 655 GT , $12 / 5 \mathrm{GT}$, 1 H 5 GT , 12 SF 5 GT , at $9 / 2$ each. 6 Q 7 GT ; $12 Q 7 \mathrm{GT}, 12 \mathrm{SQ} 7 \mathrm{GT}$, at $11 / 7$ each. 125 K 7 GT , 6K7GT, 6K6GT, 6V6GT, 42G, 43G, at $12 / 10$ each. 6ABGT, 6K8GT, at 14/- each. Postage paid. Other types as they become available for distribution.

American radio service manuals

Volume I. Spartan Emerson.
II. Crosley Belmont. Part I.
III. Crosiey Belmont. Part II.
V. Emerson. Part II.
vI. Stewart Warren FADA.

At $12 / 6$ per Volume, or complete set of six manuals $£ 312 \mathrm{~s}$. 6 d . These Manuals cover the complete range of American Radio Receivers as given and are invaluable and contain all the technical data necessary.
Terms. Cash with Order only. We regret that we are unable to send goods C.O.D.

COVENTRY RADIO

COMPONENT SPECIALISTS SINCE 1925.
HAVE YOU RECEIVED OUR
1947 LIST
OF RADIO COMPONENTS?
THE MOST COMPREHENSIVE LIST AVAILABLE TODAY
PRICE 3d. POST PAID
COVENTRY RADIO,
DUNSTABLE ROAD, LUTON, BEDS.

WARD ROTARY CORERS

For Radio, Neon Signs, Television, Fluorescent Lighting, X-ray, Cinema Equipment and innumerable other applications
We, manufacture:-
Petrol Electric Generating Plants, H.T. Generators, D.C. Motors, etc., up to 25 K. Y.A.

CHAS. F. WARD
Lordscroft Works. HAVERKILL, SUFFOLK. Telephone: Haverhill 201.

and abroad by increased volume of EXPDTT
 (Orders quickly shipped or flown)

Radlo Valves. British and American from 5/10 all at official List Prices, not increased since 1940 BRIMAR.- 1 D6, $5 B / 250 \mathrm{~A}, 6 \mathrm{BG}, \mathrm{GG8}$, GK6, 6K7,
 $1502,10 \mathrm{DL}, 11 \mathrm{D} 3,11 \mathrm{D}, 12 \mathrm{SR}, 25 \mathrm{Z4}, 100$
 $210 \mathrm{DG}, 210 \mathrm{LF}, 220 \mathrm{P}, 220 \mathrm{PA}, 807$, DDLA, MP/PEN MS/PEN, MS/PEN/B, MTS/PEN, MVS/PEN/B OM6, OM4, OM9, PT10, $2 P, 13 V 1^{\prime} A, 41 \mathrm{NHL}$ $415 T H, 42 \mathrm{PTB}, 202 \mathrm{VPH}, 210 \mathrm{DDT}, 21 \check{\mathrm{SG}}, 220 \mathrm{HPT}$ HIVAC, - XD, XH, XL, XP, XSG. DL63, DL74M, DN41, UTIC, LUD HD24, HL2, KT2, KT41, KT61, KT630, H03. H12 KTW61, K'VWi3, КTZ41, KTZ63, КTZ73M KT
 PX25, dP21, R23, U10, U16, U17, U18/20, U31, U5e U52, U74, VMP4U, VMB4B, W21, W42, X41, Xim
 MKT4, U23, X 31, X $41 \mathrm{c}, \mathrm{Z} 22,301,302,303,304$ MAZDA-AC2YenDI, AC5pell, ACEPPenDD, ACCpen, ACHL, AO/P, ACPEn, ACTH1, ACVP1, ACVPP,
 P41, Pen25, Pent 5 D 11 , Pen46, Pen 383 , Peutj3ind Penil) 4020 , QP25 © Pen46, Pen383, Pentu3 D 8P2220, TH41, TH233. TH2321, TP22, TP25, TP26, TP2620, UU6, UU7, UU8, V914, VP23, VP41, VF133, VP1322, DCP, DCSG, DD41, DD101, H210, P650, PEN383, UY5)300.
MULLARD.-2D4A, 2D13C, 5Y3, 6C5, 6D6, 6.57, 6L6, 6Q7, $6 \mathrm{R7}, 16 \mathrm{YY}, \mathrm{AZ1}, \mathrm{AZ31}, \mathrm{COH35}, \mathrm{CL333}, \mathrm{CY1}$, CY31, DF'35, DF51, DL35, DW2, DW4/500, E450. EB34, EBC3, LBC33, ECC31, ECH35, EF6, El'36, EF39, EF50, EL2, EL3, EL32, EL33, EM34, EM35,
 K K 32, K L.35. Pen4VA, Pen428, PenA4, PM2, P.n2HL,
 TDD2A, TDDIBc, 1114 B , TH21C, TIISOC, T4, UR3C, VP4, V1PA, VP4 15, VP13A, DF33, DW4 330 , ECCH2, FiF22, EL3K, ELL5O, HVR2, HYR2A, PM2DL, PM5B, PM22A, PM221, SP13c, UY31, 50 PHILLIPS.-C1, ClC, 329, 367, 1012, 1038, 1120,
 ${ }_{25} \mathbf{Y}_{5}$, 807. APP4, APP4G, DD13, DN818, ECH2 EFI2, EH2, WL5, ELA1, EM4, E\%,4, YL13, 11113 , HP1018, HP1118, НР2018, H121 18 , H1 K210, MH118, MH4103, LD210, L12S, P2018, PP6E, SP2BS, SP4B, SP4S, 88210, VP48, HL4, 1HP211C, LPP220.
AMERICAN.-OZ4, 1A4, $1 A 5,1 \mathrm{~B} 4,1 \mathrm{C} 5,1 \mathrm{D} 7$, 11E5, $1 \mathrm{ET}, 1 \mathrm{~F} 4,1 \mathrm{Fs}, 1 \mathrm{~F} 6,1 \mathrm{~F} 7,1 \mathrm{H} 4,1 \mathrm{H}, 1 \mathrm{H}, 1 \mathrm{LCG}$, $1 \mathrm{LNJ}, 1 \mathrm{~N}, 185,1 \mathrm{T4}, 1 \mathrm{TE}, 2 \mathrm{A6}, 2 \mathrm{~A} 7,2 \mathrm{BG}, 2 \mathrm{B7}, \mathrm{KU} 4$, 6V4, 5Y3, $5 Z 3,5 \mathrm{Z4}, 6 \mathrm{~A} 4,6 \mathrm{~A} 6,6 \mathrm{AF6}$, 6A8, GAGG, $6 B 7,6 B 8,6 C D, 6 C 6,6 D 5,6 D 6,6 D 8,6 \mathrm{EG}, \mathrm{EF5}$, 6F6, 6116, 6J5, 037, 6J8, OKJ, oк6, 6K7, 6K8, CL5.

 $12 \mathrm{~A}, 12 \mathrm{AG}, 12 \mathrm{~B} 7,12 J_{\mathrm{i}}, 12 \mathrm{K8}, 12 \mathrm{Q} 7,12 \mathrm{SA} 7$. 12 SNA, $12 \mathrm{AR} 7,12 \mathrm{Z5}, 14 \mathrm{~A} 7,16,17,20,22,25 \mathrm{Y6}, 25 Z_{1}, 31$, $32,33,34,3525,38,46,48,49,50,53,55,67,69,71 \mathrm{~A}$.
$779,79,81,88,83,89,807,954, ~ 455$ 77, 79, 80, 81, 82, 83, 89, 807, 954, 955, 356, 112 ZG. 6AG5, 6AG7, 6AK5, 6134, 6C8, 6E7, 6F8, 6SK7. $6 \mathrm{SL7}, 7 \mathrm{C7}, 12 \mathrm{~S} .57,12 \mathrm{SK} 7,128 \mathrm{S7}, 128 \mathrm{Q} 7,25 \mathrm{Zx}, 26$, $2 \pm .78$
Order C.O.D. and 101 more types.
subject to stock). Ruve listed numbers or equivalents equire and new types are arriving daily

THIS MONTH'S SPECIAL
Trimmer Tool Kits. (Super.) $£ 1176$ or 81126 "Peter Pan" Radio Kits
Miniature Radio for Battery and Mains
Avo. All instruments in atock
Hunts Capacitor, Analyser and Bridge
Taylor Valve Tester, 77 A, portable
Wechaical Hand Drill reonson
Sentine Crystal ser and teauphon
Sentuel New No-mast Aerial
Metal Engraving Pens
Metal Engraving Pens
Hydrometer, non-break

"Therm,", Elec. Gas Lighter "Collaro" Elec. Record Playe Car Radio R. 103 | E12 |
| :--- |
| E 12 |

Midget Condensers, 25×25.200 ${ }_{211}^{211}$ All interesting books in stock. All Enquiriss Stamp please

SERVICE with a Smile."-Repairers of all coil rewinds; American valves, spares. line cord.-F.R.I., Ltd., 22, Howland St., W. 1 Mnseum 5675 $\mathbf{R}^{\text {EWINDS, mains transformers, speaker, field }}$ 1 coil-chokes, high-grade workmanship, 7 day delivery; new transformers constructed to customers' specification, singly or in quanti-
ties.-Metronolitan Radio Service Co 1021 ties.-Metronolitan Radio Service Co. 1021 Finchlev R... N.W.11. Speedwell 3000. \{3719 24-HOUR service, 6 months' guarantee, any and i.is., etc., all types of new transf.. etc. supplied to specification; business heading or service card for trade prices.-Majestic Wind ing Co., 180. Windham Rd., Bournemouth.
T RANSFORMER rewinds, trans, replacemen former, interleaved, impregnated and clearly marked; rewinds $£ 1$, standard windings to 70 watts, coils, $15 / 6$; extra secondaries and larger types pro rata; new transformers o chokes to specification, singly or in quantity trade list on application; delivery by retarn of post most types; state model and iron sizes when ordering coils, pick-up coils. O/P trans,
field coils. etc., rewound or replaced: fully field coils. etc., rewound or replaced fully guaranteed-Ranio Services. Field St, Works, TEW grams onk wanted
NEW grams for old!-we are willing to re-
model your old radiogram into a beautiful modern walnut cabinet.- Tel. L. Marcus, Ltd., 75-77, East Rd., N.1. Cle. 2462 . [7246 W make wireless cabinets, also for radio deliveries.-Radiac, Lid., 26, Brondesbury Rd. London, N.W.6. Maida Vale 8792 . 77243 $\mathbf{W}^{\mathbf{E}}$ magnetize permanent magnets for the tity not less than 1 dozen; present delivery 7 days-A. J. Pratt E Sons, Lit., 7, Wood CAPACITY available for press tools, jigs CA and fixtures, blanking, turuing and Cap stan work and production, good delivery, Apply Blair Tool Products, 112, Greyhound BUSINESS OPPORTUNITY
PROGRESSIVE firm, considerable floor tact with practical ideas man with saleable proposition in metal, wood or plastics: busi ness arrangements considered.-Box 7444
HIGH fidelity gramophone reproduction.o doertiser, anding oi company iormer to exploit outstanding developments in with accessible London shop or other premises equipped for general radio work with a view to joining forces; the project, which has ween tried and tested, is unique and hucrative and there is a widespread demand; principals only plesse reply in confidence.-Box $7811 .[7360$
BUSINESSES FOR SALE OR WANTED R ADIO and electrical business, Hounslow main road, outgoings only' ± 75 p.a., fully equipped; £750, s.a.v.-Box 7805 . E BT. radio and electrical, business unexpired with option to renew $£ 120$ p.a., turnover £12,000 p.a.; price for goodwill and lixtures £2,000 plus s.a.v. (approx. £4,000).-Full particulars Henry Butcher \& Co., 73, Chancery Lane, W.C.2. 'Iel. Holborn 8411

SITUATIONS VACANT
UNIVEISITY COILEGE OF SWANSEA.
THE Council of the College invites applica-- tions for the post of taboratory Assistant in the Department of Physics, who will be
recuired to act as Steward primarily in charge required to act as Steward primarily in charge
of apparatus for luboratory classes; a knowof apparatis for laboratory classes; a know. and laboratory maintenance would be an advantage; wages £6 per week, rising by annual increments of $10 /$ - per week to a maximum weekly wage of $\mathrm{f} 7 / 10$ - Applications istating age and experience), together with copies of two recent testimonials. should be forwarded to the Registrar, University College, Singleton Park, Swansea

7333
$\boldsymbol{R}^{\text {ADDO service engineer required, experience }}$ Hridessentiar,-Write Farrow, lligh St., Wey REQUIRED, test engineer with knowledge R of high-power, high-frequency valve genRADIO ser engineer recuired-Apply in $R_{\text {writing to Service Manager, Masteradio. }}$ JUNIOR radiston Rd.. London. N.W. 1 . d) writing to Service Manager. Masteradio, Ltd. 319.21 , Euston R.d. London. N.W.1. A SSISTANT engineer (aged 20-25) required knowledge 1.f. amplifier design essential.-Box

The Cleverest

Here's a clever answer to your record storage problem-the new lightweight portable IM RAK. Holds Up to 50 records, $10^{\prime \prime}$ and $12^{\prime \prime}$ yet requires little more space than a medium-sized table lamp.

Record Library

Every record easy to get at. Every division individually numbered. Records held firmly in position by resilient, plastic-covered, sprung-steel divisions aud cushioned at points of contact.

Ever
 Designed!

Finished in a wide choice of gay colours. And you can add on new racks just like a unit bookcase. Now available at most record shop: 29/6d. plus 6/5 tax. Optional dustproof plastic cover $7 / 9$ plus $1 / 8 \frac{1}{2} \mathrm{~d}$.

The mew Im rak

MADE BY THE MAKERS GF THE FAMOUS IM NEEDLES

For details of your nearest supplier write to ALFRED IMHOF LTC. Dept. W.I., 112, New Oxford Street, London, W.C.I. Museum 5944.

'Astronic

BNN Series, single, dual or trialloy screened Transformers. Hermetically sealed with soldering spills or with tag panel, both for sub-chassis wiring or with international octal base.

APPLICATION
Line to grid. line to line, micro phone, driver, intervalve, anode

HERMETIC SEALING

In view of the increasing demand for hermertically sealed versions of the BNN series, an integral glass sealed base has been developed.

Literoture, in course of preparation. on request.

ASSOCIATED ELECTRONIC ENGINEERS Ltd. DALSTON GDNS. STANMORE • MIDDX

 Wordsworth 4474-5-6.TRANSFORMERS \& CHOKES
To Special requirements 14 days
Vacuum Impregnated
AUSTM MILLS LTD.
LOWER CARRS
STOCKPORT
Telephone : $\$ T O .3791$ Established 20 years.

SERVICEMEN

Three New Publications For You:-M.C.R.I.-Wiring diagrams, practical Jayouts, and usefulinformation on the servicing of the Midget Communication Receiver M.C.R. 1 Post free'2/9.
Demobbeo Valves."-A 15-page manuscript which is divided into four sections. Section 1 classifies Service Valves and gives their cominercial equivalents; Section 2 classifies Civilian valves and gives their service equiva lents; Sections 3 and 4 deal silmiarly with American valves. A most useful manuscript now that there are so many ex-government valves about. Post free 2/6.
"I.F. Alignment Peaks," compiled and edited by T. E. Fevyer, F.I.P.R.E., lists niore than 4,500 I.F. alignnient frequencies or "peaks" for superheterodyne receivers used in this country. Some forty-odd pages of double column figures, enable the engineer to find quickly the correct alignment frequency of virtually every superheterodyne set on the market whether out of date or up to date. An indispensable reference manual and timesaver. Metric conversion tables of the "peaking" frequencies and suggestions for finding an unknown or unlisted intermediate frequency are appended as essential data for the engineer. Post free 7/6.
V.E.S., 42-46, WINDMILL HILL, RUISLIP, MIDDLESEX

CONTACI' sought with specialist able to advise occaslonally on R.F. transmission ine problems.-Box 7442.
[7241
$\mathbf{R}^{\text {EQUIRED by instrument company en- }}$ and medical measuring equipineut (A) ONF Development Encineer; good physics degree or equivalent and some years' experi ence in comparable work; age at least 25 years: salary according to experience.
(B) ONE Mechanical Designer; radio experi. ence and degree or equivalent essential; salary £430-£590 p.a
(C) ONE Technical Assistant; radio experience essential; salary £6 per week upwards according to experience.-Box 6857 . 77104 FXPERIENCED radio television engineet C required, able to drive; write, giving details of experience and salary required, S.W. London area-Box 7747.
TOREMAN, experienced in component manufactory in Home Countles.-Write full details, factory in Home Countles.-Write full details, age, experience and salary required, to Box
7503 D RADGHTSMAN, junior, under 20, either Ding sox, radio and electrical technical drawing for reproduction; perspective drawing an ence, salary.-Box 7433 .

HXPERIENCED buyer required by progres 1 sive radio factory, in North London area sound knowledge of trade essential; apply fully. stating age, qualifications, experience and salary required.-Hox 7741 . 77293 R EQUIRED for small radio factory, a really of controlling staff for the increased develop ment of radio receivers and sound equipment. -Reply in writing to Box 7440 [7237 $\mathrm{R}^{\text {ADIO component manufacturers in the }}$ Midlands reguire assistant foreman in their Bakelite Assembly Depariment pood salary and prodnction bunus offered: ápplications should give full partics. of exp.-Box 7806 TABORATORY engineers are required for 11 development work on broadcast receivers, minutes from waterloo; please of Lonion, 30 age, salary expectea, experience and qualifica| age, salary expectet, experience and qualing |
| :--- |
| tions |
| 7232 | $D_{\text {ESIGNES }}$ Ehanghtsman required by Philips Laboratories, experiencer in communications equmment (electrical anim mech ticulars, to Philips Transmission, Ltd., Brath way Ril.. London. S.W.18.

[6909 TTHE Home Office invites applications from 1 men under 42 with experience of very high frequency wireless for the post of senior wireless engineer in its Communications Direc torate Salary $£ 650-£ 750$, plus consolidation addition of $£ 90$
CANDIDATES should possess professional qualifications in electrical engineering or equivalent experience. Application forms and fuller details of the service may be obtained from the Establishment Officer (Room 307) Home Office, Whitehall, S.W.1. Completed application forms must be returned to the Home Office not later than 31st Mav, 1947. DEVELOPMEN'T engineers wanted fo D design of radio test equipment, previous giving full partimilar work essential.-Write required, to Taylor Electrical Instruments Itd. 419-424, Montrose Avenue rument Bueks. $[7280$
R ADIO valve manufacturer is sceking terh grades, previous experience ni advantage but not essential; vacancies now in London far tnries, but opportunties later in naw propin cial undertaking.-Reply to Box 7434. [7222 HLECTRICAL engincers, over 20, for West fechnical training and experience in a sound technical training and experience in L.F. ampplification for testing, installation and service work.-Reply, giving details of age, qualifications, experience and salary required, to Box 7535. PHYSICISTS and electrical engineers te 1 "quired for work on Radar and radio navi gational equipment: experience in radio re search or development is essential, an honours degree desirable; several vacancies exist within the salary range, $£ 400-£ 900$, dependent on qualifications and experience. - Application formis are obtainable from the Personnel Manager. Ferranti, Ltd. Ferry Rd Fdin burgh, 5.
CIlIEF engineer require 1 for company manu facturing radio test equipment, to take full charge of design of new equipment; also responsible for testing departments and quality control-Apply, giving age, experience, technical qualifications and salary required, to
Box 6855.
$[7102$

Long Term
 DEPENDABILITY "LOWTHER-VOIGT"

REALISTIC REPRODUCTION demonstrations dally

AT
THE
LOWTHER MANUFACTURING CO.,
LOWTHER HSE., ST. MARK'S RD., BROMLEY, KENT.

RavENSBOURNE 5225

Radiographic can now offer the following Transmitting VALVES
EIMAC 35T. . 45/- RCA 813..110/RCA 805 .. 110 /- RCA 866.. 27/6

Send for Lists of TX VALVES 100TH Available Shortly.

RADIOGRAPHIC LTO. 66, OSBORNE ST., GLASGOW

"VIBRO-ARC "Engraving Pen

 15-meal-hircor otot. Operates from 4.6 V Operates from $4-6 v$
Battery or A.C. Trans former giving $6-10 \mathrm{amps}$
HOLBOROW \& CO.
8, Mossiey Avenue, Wallisdown, Bournemouth.

100 kcs. QUARTZ CRYSTAL UNIT Type Q5/100

for Secondary Frequency Standards * Accuracy better than 0.01%. * New angles of cut give a temperature coefficient of 2 parts in a million per degree Centigrade temperature change. \star Vitreous silver electrodes fired direct on to the faces of the crystal itself, giving permanence of calibration. \star Simple single valve circuit gives strong harmonics at 100 kcs . to $20,000 \mathrm{kcs}$. \star Octal based mount of compact dimensions.

PRICE 45/- Past Free
Full details of the $\mathrm{Q} 5 / 100$, including circuit. are contained in our leaflet QI. Send stamp to-day for your copy.
THE QUARTZ CRYSTAL Co., Ltd. 63-71 Kingston Road, NEW MALDEN, SURREY

Telephone : MALden 0334

THE "FLUXITE QUINS" AT WCRK
"Hey quick ! Look, our set's all aligh? We've got a big fuse there all right."
"Don': worry," EE cried,

- That's our lad gone inside

With a torch and at in of FLUXITE I.

See that FLUXITE is always by you-in the house-garageworkshop - wherever speedy soldering is needed. Used for over 30 years in Government works and by leading engineers and manufacturers. Of all Iron-mongers-in tins, 10d., $1 / 6 \& 3 /$ -

TO CYCLISTS I Your wheels will NOT keep round and true unless the spotes are tied with fine wire at the crossings AND SOLDERED. This makes a much stronger wheel. It's simple-with FLUXITE-but IMPORTANT.

The FLUXITE GUN puts FLUXITE where you want it by a simple pressure. Price $1 / 6$, or filled, 2/6.
all mechanics wil have

FLUXITE

IT SIMPLIFIES ALL SOLDERING
Wrile for Book on the ART OF "SOFT" SOLDERING and for Leflits on CASEHARDENING STEEL and TEMPERING TOOLS with FLUXITE. Price 1d. each.

FLUXITE LTD.

(Dept. W.W.), Bermondsey Street, S.E.I

A SSISTANT required in electronic laboraNorther of North-w est London, applicants should have had experience with electro-magnetic devices, motors, etc., as well as with Electronic circuits, and should state experience and silary requíred.-Box 7436
quired
1 LECTRONIC development engineer required lor electro-medical and similar apparatus, degree or equivalent; salary ex400-2500 according to qualifications and experiencesonnel Manager, The Edison Swan Electric Co., Ltd., Ponders End, Middlesex. [7220 D RAUGMTSMEN and tracers required with data supplied by designer; (1) mech. draughting (2) elect., preferably with exp on radin comm. equipment: workshop exp. preferred.comm. equipment: workshop exp. preferred.Transmission, Lld.. Brathway Rd., S.W.18. R EQUIRED first class designer draughtsman 1 with experience of radio and electrical equipment and the design of chassis, pres tools, sub-assemblies, etc.; mechanical know ledge desirable radio and electrical engineers in London area.-Write, stating age, experience and salary requird, to Box 7532. [7264 R ADAR and radio senior assembly foremen. - At least three are required for assembly of radar and radio equipments, Manchester area; this is a golden opportunity for men of the right calibre, and initiative.-Apply, giving full particulars of age, experience, qualifientions and saalry required, to Box
7448 .
$[7258$ D ESIGNER draughtsman required by old enced in lished firm near Croydon, elec tro-mechanical apparatus; knowledge of work shop practice and production problems; capable of working on own initiative: salary \& 472 p.8.-Apply, etating age, qualifications etc., to Box 7445 .

7248
R ADIO engineering company in South LonR don requires engineer to take charge of test department specializing in radio naviga tional equipment; applicants must be able to prove they have first class technical qualifica tions combined with considerable experience in similar work; position offers good opportunities to the right man.-Write full details to Box 7429.
[7202 R ADAR and radio machine shop foremen IL At least threc senior machine shop fore men are reqnired to supervise the production of components for radar and radio equipments, Nanchester area; this is a golden opportunity Apply, giving tull particulars of age, experience, qualitications and salary required, to Box 7447.
college
MASTER wanted for leading radio college 11 in London; correspondence, lecture and practical courses, science degree (or equivalent and rood practical outlook essential, age pre ferably not over 30 ; salary £350- $£ 500$ accord ing to age, qualifications and experience. cost of living nllowance $29 / 6$ per week, and superannuation benefits-Apply, stating age, fullest details of education and experience, to Box 7432.

TECHNICAI assistant required to act as - secretary to committees covering a wide range of technical subjects; a knowledge ol telecommunication technique desirable; salary $\$ 500$ to $£ 700$, according to qualifications ani erperience.-Applications to be made in wril ing to the Director, British Standards Inst tution, 28, Victoria St.: London. S.W.1, the envelope heing marker " Technical Assistant. THE Home Office invites applications from 1 men belween 21 and 51 with experience of very high frequency wireless for the follow. ing permanent and pensionable posts in its Regional Wireless Service: Regional wireless engineer, salary $£ 620-£ 710$; Ohiel wireless techrician. salary not less than 2420 at age $30-$ \&570; Senior wireless technician, salary $£ 375$ £475: Wireless technician, salary 2280 lat 251.5370 .

CANDIDATES should apply for application forms and fulter details of the Service to the Establishment Officer, Room 307, Home Office, Whitehall, S.W.1, or to the Chicf Officer. Civil Service Commission, at the following acdrresses
(INDIA) 10 Duderhill Lane. Delhi. (EGYPT) 8 Sharia Tolumbat, Garden City, Cairo.
Cairo,
(GERMANY) c/o 2nd Echelon. G.H.Q. B AOR
COMPLETE application forms must be reCompLETEN application orms must be returned to the Home Office not later than 3 ist May, 1947 for candidates in the nited King-
dom and by 31 st $J u l y$. 1947. for candidates dorn and by 31st July. 1947. for candidates
overseas.
$[7256$

DESEG

FDR R.A.

The MB. 31 amplifier incorporates the Cathode-anode cutput circuit developed by Acoustical, resulting in a total distortion content incapable of detection by the human ear. A flat frequency response from $40-15,000$ c.p.s. is obtainable, mocified by a microphone volume control so weighted that "natural" reproduction is maintained at all levels.
Introducing compression near full output, a higher average output level can be handled without the distress caused by overload feaks. Operating from AC mains or $\mathbf{1 2}$-volt battery, and having alternative input and output impedances, the MB.3I amplifier is extremely versatile and suitable for most types of general public address work.

©
 Acvustical

ACOUSTICAL MANUFACTURING CO. LTD. HUNTINGDON.

Tel. 361

AMATEUR CRYSTALS IN MINIATURE

02% callbr

7 megacycles.
7
27.6 each.
35 - aach.

14 megacycyeles
Hermetically
standard B7G base.
(Small stocks at present, but delivery improviug) AMERICAN VALVES (NEW) Button Base, Acorn, Metal and G.T. types. Available from Stock.
9001, 9002, 9003, 15/- ea. 6AG5, 6AKJ, 6C4, 6J6, 15/- ea $955,25 /-957,35 /-.024,15 / 3.68 K 7,6857,68 G 7$ 12/10 ea. GAC7/1852, 21/4. 6AG7, 21/4. 6С5, 6J5 $9 / 2$ ea. 6H6, 69. 6FG, 6L7, GK6, 1210 en. 6SA7 14/ $6 \mathrm{E5}, 15 / \mathrm{m} .6 \mathrm{~L} 6,6 \mathrm{SN7}, 6 \mathrm{SL7}, 6 \mathrm{SC7}, 18 / 3$ еа. 128 K 7 128J7, 12SG7, 12AG, 12/10 ea. 12K8, 14/-
International Octal Bases (Ceramic), 2/6. R.C.A. Button Bases, for 9001, ©AK5, etc. (Ceramic), 16. Button Bases with shield cans, 3/-. American Acorn Bases (Ceramic) 2/-. American Loktal Bases (Bakelite). 1/-. EF50 Brses

TELE-RADIO (1943) LTD.

177, Edgware Road, London, W. 2 Telephone : PADdington 6116
PLEASE NOTE: Above is our only address-we are in no way associated with any other company of similar name.

Does these?

ACCURATELY and QUICKLY chassis, Brackets, Sbrouds, CondenTREPANNINGAtcel or Aluminium. Five sizes- 12° to 36°
A. A. TOO LS, (W) ASH TON-UNDER-LYNE

THE COIL PICKUP LOOK FOR IT AT THE

BRITISH INDUSTRIES FAIR
WILKINS \& WRIGHT LTD.,
HOLYHEAD RD., BIRMINGHAM, 21

-

 ldeal for voltage testing; low $100 / 850$ A.C. and D.C. Allowance made on old modelsend for interesting leoflet (R.14) on Electrical and Radio Jesting, from all Dealers or direct. TUN:ALKGN.MANCHIETKRI

LONDEX for RELAYS

R ESEARCH and development engineer re good mathematical theorewical knowledge and ence of acrial and feeder calculations an advantage; plenty of scope for a man with originality and initiative; laboratory situated in Central London.-State qualifications, experience, and London-State qualifications, experience, and
salary required, 10 Bor 7441 .
[7240 salary required, 10 Boz 7441 [7240 EXCEPTIONAL opportunties for draughtsMarconi drawing offices. Chelmsiord. for the design ol radio equipment; radio experience desirable but not essential. although drawing office experience of electrical and mechanical apparatus definitely required; much of the work is in close collaboration with the research and development engincers.-Apply English Electric Co.. Ltd., Queen's House, Kingsway, Dondon. W.C.2. D practical experience in electro-acoustic and nudio-frequency work wanted for estab. lished manufacturer in Guidiord-Farnham area; must have had at least three years indus tabulate and analyse results, capable of tracing bibliographically previous developments and of carrving an assignment through from start of carrving an assignment through rom shart ence, age, etc.; only those applients comply ing with the above conditions can be considered; salary commensurate with ability and
experience.- Box 6394 . R RITISH BROADCASTING CORPORA 13 TION.-Applications are invited from men (British) for a senior post in the Acoustics Section of Rescarch Department based in
London. Applicants should possess a University degree and have a knowledge of physics and electronics: a good knowledge of music essential as acoustical eкperimental work in tions will be involved. The duties include research on acoustical design of studios and investigations into the acoustical properties of materials and structures; previous experience in acoustical investigation would be an adyantage; commencing salary will be depenment on qualifications and experience. and subject to favourablo report will rise by annual increments to a maximum of f890 per annum. Applications, stating age, qualifications and experience, should reach the Engineering Establishment Ófficer, Broadcasting House, London. W.1. within fourteen days of the appearance of this advertisement. B RITISH BROATEASTING CORPORA (British) for a nost of engineer in the Design and Installation Department based in London. Applicants must have considerable experience of high quality sound recording systems and a sound knowledge of the electrical and mechanical principles governing their design and operation. It is desirable, but not essential. that candidates should possess a University degree in Electrical Engineering for equivalent qualifications). The successiful applicant will be required to organise and supervise the installation of sound recording equipment of conntry and to carry out certain associater technical development work and testing: commenciag salasy will be dependent on qualificamencing salary will be dependent on qualifications and experience and subject to favourable
reports will rise by anmal increments of $£ 30$ reports will rise by anmual inctements of $£ 30$ tions, maximum of stating ace, qualifications and Applications, stating age, Tualifications, and experience. shonid reach the Engineering Establish-
ment Officer. Broadcasting Ilouse,
London. ment Officer. Broadcasting Ilouse, London
W.1. within fourteen days of the apmearance of W.1. Within fourtieen days of the appearance of
this advertisement.
$[7260$

B RITISH BROADCASTING CORPORA post of instructor in ons are invited for the fejefrtment to cover B.B.C. transmitting stations and studio centres in South-West England: candidates should possess a degree, Higher National Certificate or equivalent qualifications in electrical engmeering or physics, and have a good knowledge of ranlio engineering, experience in teaching and of will be an advantage; the successful applicant will be required to undergo a period of training at the Engineering Training Department, Evesham, Worcs, and at suitable Department, and studio centres; the duties will inclade the training of jumior staff, giving sprcialist lectraining of jumior staft, gliving spricialist lectraining purposes: Commencing salary will be training parposes: Commencing salary will be
dependent on qualifications and experience and dependent on qualifications and experience and
subject to favourahle reports will rise by £680 rer annum.-Applications, stating age, quab rer annum, -Aprications, stating age,
qualifications and experience, should reach the Engineering Establithment Officer. Broadcasting House, London, W. 1 , within 14 davs of

THESE ARE IN STOCK

Wireless Servicing Manual, by W. T. Cocking, 10 s .6 d ., postage 5 d .
Radio Engineers Handbook, by F. E. Terman, 35s., postage 9d
The Cathode Ray Tube Handbook, by
S. K. Lewer, $6 s .$, postage 4 d .

The Wireless World Valve Data, 2s, postage 2d.
The Radio Tube Vade Mecum, by P. H. Brans, 12s. 6d., postage 6d.
Radio Engineering, by F. E. Terman, 30s. postage 9 d .
Radio Upkeep and Repairs, by A. T Witts, 7s. 6d., postage 6 d .
Communication Engineering, by W. L Everitt, 27s. 6d., postage 9d,
Problems in Radio Engineering, by E. T. A Rapson, 5s, postage 4d.
Thermionic Valve Circuits, by E. Williams 12s. 6d., postage 6d.
Standard Handbook for Electrical Engineers, edited by A. E. Knowlton, 45s., postage ls.
Radar : Radiolocation Simply Explained, by R. W. Hallows, 7s. 6d., postage 4d,
WE HAVETHEFINESTSTOCKOF BRITISH AND AMERICAN RADIO BOOKS. WRITE OR CALL FOR COMPLETE LIST.
THE MODERN BOOK CO.

AGSO RMDIO

SPECIALISTS IN AMATEUR AND EXPERIMENTAL SHORT-WAVE EQUIPMENT,
Amplifiers, Speakers, Aerials, Receivisg and Iranamitting Valves and Meters, etc.
A.C.S. RADIO, 44, Widmore Rd., BROMLEY, Kent.

Phone : RAV OI 56

BEETHOVEN ELECTRICEQUIPMENT LTD. Beethoren Works, Chase Road, London, N.W. 10

REW\|NDS

Armatures, Fields, Transformers, Pickups, Vacuum Cleaners, Gram. Motors. Speakers Refitted New Cones \& Speech Coils.
All Guaranteed and promptly executed. New Vacuum Cleaners, most popalar makes. Send and C.O.D. Service.
A.D.S. Co.

261-3-5, Lichfieid Road,

MORSE CDIDE

Thaining

There are Candler Morse Code Courses for
BEGINNERS AND OPERATORS.
Send for this Free
"BOOK OF FACTS
It gives full details concerning all Courses.
THE CANDLER SYSTEM CO.
(Room 55W), 121 Kingsway, London, W.C. 2 Candler System Co., Denver, Colorado, U.S.A.

MWILSONL

television circuit

for the hOME CONSTRUCTOR

Model No. 2

Full size blue prints for a 12 valve (including rectifiers) Television Receiver for Home Constructors. This receiver is based on the Unit System of construction and will operate within a 20 -mile radius of the Transmitting Station. It uses a Cathode Ray tube of the MAGNETIC DEFLECTION type having a 7 -inch screen. The T.R.F. circuit for both Sound and Vision is simple yet efficient
Unit No. 1. Vision. Unit No. 2. Sound Unit No. 3. Time Base. Unit No.4. Power Pack

Complete set of 5 blue prints. Full size, including theoretical. Price 10/-

BLUE PRINTS

Specification of our very successful

Circuit No. 20

A.C. 9 valve Superheterodyne Constructor's Kit receiver $5-2,000$ metres. Using our valve sequence, R.F. stage GK7; 1st detector and Oscillator 6K8; I.F. Amp. 61K7; 2nd detector, A.V.C., 1st L.F. and noise 6B8; Phase inverter H63; Output
6V8's in Push-pull with negative feedback; 6V6's in Push-pull with negative feedoack,

Tuning indicator YG3; Full wave rectifier 5 U 4 G . Six wavebands $5-2,000$ metres covering Televisions sound. A.V.C. on/oft, Controls R.F. gain; Wavechange Switch, A. V.C. on/off. Audio gain control and on/orr switch; tone control; rad set of blue prints (Full size) 2 PRACTICAL and 1 theoretical with detailed priced list of components $5 /-$ per set. The COIL KIT for above consists of 3, 18 s.w.g. aluminiwm screens, with 18 iron cored coils and 18 Ceramic trimmers, 2 ceramic padders, 3 , two-pole 6 -way switches with shorting plates, mounted ready for wiring up from a foul size blue print. All A.V.C. resistors and decoupling condensers, fixed | padders, screened sleeving, etc., included. |
| :--- |
| Sizc approx. $5 \frac{1}{2} \times 5 \frac{1}{2} \times 3$. |

307. HIGH ROLBORN, LONDON ws.1. Phone: HOLSorn 463 I

HARTLEY-TURNER HIGHEST FIDELITY SERVICE

We are pleased to welcome the everincreasing number of technical and musical enthusiasts wio come to our new premises to hear good reproduc-

tion and exchange views on "hi-fi." Five minutes" demonstration is more convincing than a ton o talk or an acre of advertising. So don't believe a word we say even when we don't say we make the pest speaker. Come and hear it and prove it for yourself. And if you can't call, see that you get
your name on our mailing list. Otherwise you will miss something good when you most need it. Ask for the speaker leaflet now. Other information will follow automatically.

SPEAKER: MODEL 215-f9

H. A. HARTLEY CO. LTD 152 HAMMERSMITH RD., LONDON, W. 6

BRITISH BROADCASTING CORPORA men (British) for the post are invited from men (Bribish) for the post ons ent the Recording Section of the Research Departmest based in London. A university degree in Phyics or Electrical Engineering (or equivalent qualifications) would be an advantage. Familiarity with low frequency technique is essential and a knowledge of music, sufficient to deal with the "balancing " of the various com-
ponents of musical combinations for recording ponents of musical combinations for recording purnoses, is desirable. Preference will be given to applicants with experience in the design of light electrical and mechanical equipment, and ability to organise development work in the Drawing Office and Workshops. The successful applicant will be employed on research and cevelopment work on all aspects of recording and allied low-frequency problems
vill normally work under the supervision of the Head of the Recording Section, but will hare ample scope for initiative and originality Conmencing salary will be dependent on qualifoctions and experience and, subject to fivour able report, will rise by annual increments of \& 70 to a maximum of $£ 680$ per annum Applications, stating age, qualifications and experience, should reach the Engineering Establishment Officer Broadcasting Honse Establon W. within fourtean dars of alpearance of this advertisement. [7285

> SITUATIONS WANTED

FXECUTIVE A.M.I.E.E., age 35, radar. salary $£ 780$ light electrical, requires change; TECFNICIAN, 37,14 yrs. exp. R.F., ${ }^{6956}$ A.F. lectronics, lab. or dev. preff., good con.-Box 7^{7807} WO ex-R.A.F. wireless mechs. seek prog. 1. positions, willing to study, not averse to hard or outdoor work, one employed electrician, other radio fitter.-Box 7749 . 7317 TECTURER, public speaker and radio tech1 nicist, exp. broadcasting, education, science, administration and writing, invites offers of contracts or permanency.-Box 7746. R ADIO engineer (31), wide practical and tenance, competent business administrator; would travel as representative; available May, Write Box 7438 . 77234 Q UALIFIED engineer, 1 st class C. \& G. ence, V.H.F. communications, 'desires suitable appointment abroad, South África. Australia. New Zealand preferred.-Box 7607. [7290 SENIOR Radar circuit engineer, 7 years develonment, requires responsible situation abroad if possible (Radar communications, Geiger counters, etc., industrial electronics) industrial research experience; highest reler ences may be obtained.-Box 7809.
$[7348$

WORKS manager, 44 yrs., with over 16 for new post; experienced all usual machining and assembły operations for light electro-me chanical assemblies including radio and domestic applinnces; used to controlling purchasing, drawing office toolroom, time study planning costing. budgetary control, maintenance, stores | costing. budgetary control, maintenance, stores, |
| :--- |
| transport. et.-Box 7446. | transport, etc.-Box 7446

W IRELESS operator, Dutchman, single, Dutch Nautical School and R.A.F. (aircrew wireless operator), sending receiving 18 words min., seeks appointment in England or overseas (e.g. South Africa); willing to serve wherever, by hard work, progress is possible.J. H. Van der Wende. c/o Kerkstraat 2, Mus selkanaal (Gr.), Holland

PATENTS

THE proprietor of British Patent No. 531963 entited Device for produring vibrato offers same for licence or otherwise to ensure practical working in Great Britain--Inquiries to Singer Fhlert Stern \& Carlber, 28 East Jackson Boulevard, Chicago, 4, Illinois, U.S.A

TUITION

R ADIO training.-P.M.G. exams. and I.E.E R Diploma; prospectus iree. - Technica Collece, Hull
$[0611$
Wire
R ADJO Engineering. Television and Wire courses of instruction.-Apply British Schoo of Telegraphy, Ltd., 179, Clapham Rd.، Lon don, S.W. 9 (Esta. 1906) Also instruction at. school in wireless for H.M. Merchant 19249 and R.A.F

BOOKS. INSTRUCTIONS, ETC.
FEW technical radio books, half price; stamp $\mathbf{W}^{\text {EBB'S }}$ radio map of the world locates W any station heard, size $40 \times 30 \mathrm{in}$. $4 / 6$, post 6d. on linen, $10 / 6$, post free.-Webb

AN AC/DC five valve Superhet Two WaveBand Receiver for 200-250 volt mains . . .

Of striking appearance in attractive trocolour plastic cabinet, with unique illuminated translucent dial and novel tuning mechanism to combine slow and accurate tuning with fast band search (5 tuned circuits).

E13.13.0 Plus Purchas
In maroon, red, white or pastel shades of blue, MP, 7. extra. Pus $1 / 9$ P. Tax. Guaranteed GHAMPION ELECTRIC CORPORATION CHAMPION WORKS, SEAFORD, SUSSEX Tel. No. : SEAford 3235

REWINDS

Send your "Burn outs" to be Rewound - no technical data wanted. Post Transformer, etc., labelled with your name and address marked "for Rewind.

OUR WINDINGS ARE LAYER WOUND \& IMPREGNATED SOUTHERN TRADE SERVICES, LTD. 297/299, HIGH ST., CROYDON
 Tel. : 4870
 Manufacturers of "TELECRAFT" PRODUCTS

POSTWAR TELEVISION

The advance in Radio Teçnnlyue offers unlimited opportunities of high pay and secure posts for those Radio Engineers who Lave had the foresight to become techalcally qualified. How you can do this quickly and easily in your spare time is fully explained in our unique handbook.
Full details are given of A.M.I.E.E., A.M.Brit.I.R.E. City \& Guilds Exams., and particulars of up-to-date courses in Wireless EngIneering, Radio Servicing, Short Waves, Television Mathematics, etc. etc.

We Guarantee "NO PASS-NOFEE '
Prepare for to-morrow's opportunities and post-var competition by sending for your copy of this very Informative 112 -june guide NOW-FREE.
BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY (Dept. 388)
17, Strafford Place, London, W. 1

SPECIAL MDLAND INSTRUMENT CO
SPECIAL OFFER OF EX-GOV. ALL-DRY BATTERIES Highest grade manufacture, tropical standard, iv airtight packing, brand new and tally guaranteed by us, 00.v. H.T. plus 1t-v. L.T. 5/-, post \&d. Sealed cartons of $8,35 /-$ post paid. Trade supplied. Above can easily be split to form three $30-\mathrm{v}$. H.T. units (size of U. 2 cell), ideal for midget nets, deaf birds, etc. hundreds of other items : send for our new March
18., Herb erne
borne Park Road, Birmingham. 17
Tel.: HARborne 1308 .

LIMITED SUPPLIES ONLY

Deposit will secure

Canadian 103 Sets. Ideal for 6 volt Car or Yacht Radio. Coverage 200-550 metres plus 2 Short Wave Bands. Complete with Aerial and Leads......
EDDYSTONE 540X Communications
Receiver
B.P.L. Signal Generator. A.C. $100 \mathrm{~K} / \mathrm{cs}$
to $20 \mathrm{M} / \mathrm{cs}$
20 Gins.
Avo, Model 7
619100
and an exceptionally fine range of components and valves. $1 /=$ P.O. will bring you our new revised catalogue.
EMT:
63, London Road, Brighton 1, Sussex.
Tel. : Brighton 1555

THE familiar buildings of the Royal Observatory house a proud and stable tradition of British scientific accuracy . . . "Greenwich Time ' is never questioned.

Where stability, accuracy of capacitance are essential requirements, Hunts Silvered Mica Capacitors can be relied upon. They also possess the advantages of initial low cost

TRADE MARK,
PROTECTED SILVERED MICA

[^12]and also economical application, the lightweight construction allowing them to be used without fixing holes or special mountings.

A range from 10 to $10,000 \mathrm{pF}$ is available in a variety of types and sizes - full details upon request.

[^0]: Advt. of The General Electric Co. Led., Magnet House, Kingsway. London. W.C. 2

[^1]: BULLERS LTD., 6, LAURENCE POUNTNEY HILL, LONDON, E.C. 4 Telephone: Mansion House 9971 (3 lines) Telegrams: "Bullers, Cannon, London"

[^2]: COOPER
 MANUFACTURING CO.
 HANWAY WORKS, HANWAYST., LONDON,W. 1 Telephone: MUSeum 9779 SALES OFFICES-Top Floor

[^3]: * P. J. Baxandall, "Wireless World", Feb. 1947, pp. 57-61.

[^4]: Pulse Width Modulation, Wireless World, December, 1945.

 Army Set No. IO, Wireless World, December, 1945.

 Pulse Time Modulation, Wireless World, February, 1946.

 Multi-Channel Pulse Modulation, Wireless World, June, 1946.

 Army No. 10 Set, Wireless World, September, 1946.

[^5]: " "Transient Response of V.F. Couplings," by W. E. Thomson, Wireless Engineer, January 1947, Vol. 24, p. 20.

[^6]: 1 "Fluctuation Induced in Vacuum Tube Grids at High Frequencies." lroc. I.R.E., Vol. 20, p. $40(19+1)$.

[^7]: 1 It is regretted that the denominator of the third term was inadvertently given as G_{2} instead of $\mathrm{G}_{1} \mathrm{C}_{2}$ in Part I.

[^8]: "For bibliography, see W. Br.Lewis, "Radio Receivers," J.I.E.E.; Vol. 93,"Part IHA, No."I.!

[^9]: ${ }^{1}$ Wireless Worid, Oct. 1946, p. 320.

[^10]: The largest Organisation In Great Britain spocialleing 80 LELY In 8ound Equipment.

 Bronches throughout the British isles.

[^11]: Change of Address.-Coulphone Change of Address.-Coulphone to 58, Derby Street, Ormskirk, Lancs.

 Edstone, Ltd., sole concessionaires for the Lectrona loudspeaker, has moved to 7. Princes Street, London, S.W.r. Tel.: WHI ${ }^{7} 88_{5-6}$.

[^12]: A. H. HUNT LTD. LONDON, S.W. 18

 Established 1901

